Your browser doesn't support javascript.
loading
Inference on latent factor models for informative censoring.
Ungolo, Francesco; van den Heuvel, Edwin R.
Afiliação
  • Ungolo F; Chair of Mathematical Finance, 9184Technical University of Munich, Garching bei München, Germany.
  • van den Heuvel ER; Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands.
Stat Methods Med Res ; 31(5): 801-820, 2022 05.
Article em En | MEDLINE | ID: mdl-35077263
This work discusses the problem of informative censoring in survival studies. A joint model for the time to event and the time to censoring is presented. Their hazard functions include a latent factor in order to identify this joint model without sacrificing the flexibility of the parametric specification. Furthermore, a fully Bayesian formulation with a semi-parametric proportional hazard function is provided. Similar latent variable models have been described in literature, but here the emphasis is on the performance of the inferential task of the resulting mixture model with unknown number of components. The posterior distribution of the parameters is estimated using Hamiltonian Monte Carlo methods implemented in Stan. Simulation studies are provided to study its performance and the methodology is implemented for the analysis of the ACTG175 clinical trial dataset yielding a better fit. The results are also compared to the non-informative censoring case to show that ignoring informative censoring may lead to serious biases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Stat Methods Med Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Stat Methods Med Res Ano de publicação: 2022 Tipo de documento: Article