Channel Scaling Dependent Photoresponse of Copper-Based Flexible Photodetectors Fabricated Using Laser-Induced Oxidation.
ACS Appl Mater Interfaces
; 14(5): 6977-6984, 2022 Feb 09.
Article
em En
| MEDLINE
| ID: mdl-35080847
Copper (Cu) oxide compounds (CuxO), which include cupric (CuO) and cuprous (Cu2O) oxide, have been recognized as a promising p-channel material with useful photovoltaic properties and superior thermal conductivity. Typically, deposition methods or thermal oxidation can be used to obtain CuxO. However, these processes are difficult to apply to flexible substrates because plastics have a comparatively low glass transition temperature. Also, additional patterning steps are needed to fabricate applications. In this work, we fabricated a metal-semiconductor-metal photodetector using laser-induced oxidation of thin Cu films under ambient conditions. Raman spectroscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and atomic force microscopy were used to study the composition and morphology of our devices. Moreover, the photoresponse of this device is reported herein. We performed an in-depth analysis of the relationship between the channel size and number of carriers using scanning photocurrent microscopy. The carrier transport behaviors were identified; the photocurrent decreased as the length and width of the channel increased. Furthermore, we verified the suitability of the device as a flexible photodetector using a variety of bending tests. Our in-depth analysis of this Cu-based flexible photodetector could play an important role in understanding the mechanisms of other flexible photovoltaic applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Ano de publicação:
2022
Tipo de documento:
Article