Structural biology of cell surface receptors implicated in Alzheimer's disease.
Biophys Rev
; 14(1): 233-255, 2022 Feb.
Article
em En
| MEDLINE
| ID: mdl-35340615
Alzheimer's disease is a common and devastating age-related disease with no effective disease-modifying treatments. Human genetics has implicated a wide range of cell surface receptors as playing a role in the disease, many of which are involved in the production or clearance of neurotoxins in the brain. Amyloid precursor protein, a membrane-bound signaling molecule, is at the very heart of the disease: hereditary mutations in its gene are associated with a greatly increased risk of getting the disease. A proteolytic breakdown product of amyloid precursor protein, the neurotoxic Aß peptide, has been the target for many drug discovery efforts. Antibodies have been designed to target Aß production with some success, although they have not proved efficacious in clinical trials with regards to cognitive benefits to date. Many of the recently identified genes associated with late-onset Alzheimer's disease risk are integral to the innate immune system. Some of these genes code for microglial proteins, such as the strongest genetic risk factor for the disease, namely APOE, and the cell surface receptors CD33 and TREM2 which are involved in clearance of the Aß peptide from the brain. In this review, we show how structural biology has provided key insights into the normal functioning of these cell surface receptors and provided a framework for developing novel treatments to combat Alzheimer's disease.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Biophys Rev
Ano de publicação:
2022
Tipo de documento:
Article