Environmental geochemistry of higher radioactivity in a transboundary Himalayan river sediment (Brahmaputra, Bangladesh): potential radiation exposure and health risks.
Environ Sci Pollut Res Int
; 29(38): 57357-57375, 2022 Aug.
Article
em En
| MEDLINE
| ID: mdl-35349070
This study of a downstream segment (Brahmaputra, Bangladesh) of one of the longest transboundary (China-India-Bangladesh) Himalayan rivers reveals elevated radioactivity compared to other freshwater basins across the world. Naturally occurring radioactive nuclides (226Ra, 232Th, and 40K) and metal contents (transition metals, Fe, Ti, Sc, and V; rare earth elements, La, Ce, Eu, Sm, Dy, Yb, and Lu; high field strength elements, Ta and Hf; and actinides, Th and U) in thirty sediment samples were measured by HPGe γ-spectrophotometry and research reactor-based neutron activation analysis, respectively. We systematically investigated the mechanism of the deposition of higher radioactivity concentrations and rare earth elements (REEs) associated with heavy minerals (HMs) and photomicrograph-based mineralogical analysis. The results show that total REEs (∑REE) and Ta, Hf, U, and Th are generally 1.5- to 3.0-fold elevated compared to crustal values associated with -δEu and -δCe anomalies, suggesting a felsic source provenance. The enrichment of light REEs (×1.5 upper continental crust (UCC)) and Th (×1.9 UCC), besides Th/U (=7.74 ± 2.35) and 232Th/40K ratios, along with the micrographic and statistical approaches, revealed the elevated presence of HMs. Fluvial suspended sedimentary transportation (from upstream) followed by mineralogical recycling and sorting enriched the HM depositions in this basin. Bivariate plots, including La/Th-Hf, La/Th-Th/Yb, and La/V-Th/Yb, revealed significant contributions of felsic source rock compared to mafic sources. The assessment of radiological hazards demonstrates ionizing-radiation-associated health risks to the local residents and people inhabiting houses made from Brahmaputra River sediments (as construction material).
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
2_ODS3
Base de dados:
MEDLINE
Assunto principal:
Radioatividade
/
Exposição à Radiação
/
Metais Terras Raras
Tipo de estudo:
Etiology_studies
/
Risk_factors_studies
Limite:
Humans
País/Região como assunto:
Asia
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Ano de publicação:
2022
Tipo de documento:
Article