Your browser doesn't support javascript.
loading
Post-exfoliation functionalisation of metal-organic framework nanosheets via click chemistry.
Nicks, Joshua; Foster, Jonathan A.
Afiliação
  • Nicks J; Department of Chemistry, University of Sheffield, Sheffield, UK. jona.foster@sheffield.ac.uk.
  • Foster JA; Department of Chemistry, University of Sheffield, Sheffield, UK. jona.foster@sheffield.ac.uk.
Nanoscale ; 14(16): 6220-6227, 2022 Apr 21.
Article em En | MEDLINE | ID: mdl-35403656
ABSTRACT
The liquid exfoliation of layered metal-organic frameworks (MOFs) to form nanosheets (MONs) exposes buried functional groups making them useful in a range of sensing and catalytic applications. Here we show how high yielding click reactions can be used post-exfoliation to systematically modify the surface chemistry of MONs allowing for tuning of their surface properties and their use in new applications. A layered amino-functionalised framework is converted through conventional post-synthetic functionalisation of the bulk MOF to form azide functionalised frameworks of up to >99% yield. Ultrasonic liquid exfoliation is then used to form few-layer nanosheets, which are further functionalised through post exfoliation functionalisation using Cu(I)-catalysed azide-alkyne cycloaddition reactions. Here we demonstrate the advantages of post-exfoliation functionalisation in enabling (1) a range of functional groups to be incorporated in high yields; (2) tuning of nanosheet surface properties without the need for extensive recharacterisation; (3) the addition of fluorescent functional groups to enable their use in the sensing of hazardous nitrobenzene. We anticipate that the versatility of different functional groups that can be introduced through high yielding click reactions will lead to advances in the use of MONs and other 2D materials for a variety of applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2022 Tipo de documento: Article