Your browser doesn't support javascript.
loading
The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution.
Nirmal, Ajit J; Maliga, Zoltan; Vallius, Tuulia; Quattrochi, Brian; Chen, Alyce A; Jacobson, Connor A; Pelletier, Roxanne J; Yapp, Clarence; Arias-Camison, Raquel; Chen, Yu-An; Lian, Christine G; Murphy, George F; Santagata, Sandro; Sorger, Peter K.
Afiliação
  • Nirmal AJ; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.
  • Maliga Z; Ludwig Center at Harvard, Boston, Massachusetts.
  • Vallius T; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
  • Quattrochi B; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.
  • Chen AA; Ludwig Center at Harvard, Boston, Massachusetts.
  • Jacobson CA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.
  • Pelletier RJ; Ludwig Center at Harvard, Boston, Massachusetts.
  • Yapp C; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
  • Arias-Camison R; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.
  • Chen YA; Ludwig Center at Harvard, Boston, Massachusetts.
  • Lian CG; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.
  • Murphy GF; Ludwig Center at Harvard, Boston, Massachusetts.
  • Santagata S; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.
  • Sorger PK; Ludwig Center at Harvard, Boston, Massachusetts.
Cancer Discov ; 12(6): 1518-1541, 2022 06 02.
Article em En | MEDLINE | ID: mdl-35404441
ABSTRACT
Cutaneous melanoma is a highly immunogenic malignancy that is surgically curable at early stages but life-threatening when metastatic. Here we integrate high-plex imaging, 3D high-resolution microscopy, and spatially resolved microregion transcriptomics to study immune evasion and immunoediting in primary melanoma. We find that recurrent cellular neighborhoods involving tumor, immune, and stromal cells change significantly along a progression axis involving precursor states, melanoma in situ, and invasive tumor. Hallmarks of immunosuppression are already detectable in precursor regions. When tumors become locally invasive, a consolidated and spatially restricted suppressive environment forms along the tumor-stromal boundary. This environment is established by cytokine gradients that promote expression of MHC-II and IDO1, and by PD1-PDL1-mediated cell contacts involving macrophages, dendritic cells, and T cells. A few millimeters away, cytotoxic T cells synapse with melanoma cells in fields of tumor regression. Thus, invasion and immunoediting can coexist within a few millimeters of each other in a single specimen.

SIGNIFICANCE:

The reorganization of the tumor ecosystem in primary melanoma is an excellent setting in which to study immunoediting and immune evasion. Guided by classic histopathology, spatial profiling of proteins and mRNA reveals recurrent morphologic and molecular features of tumor evolution that involve localized paracrine cytokine signaling and direct cell-cell contact. This article is highlighted in the In This Issue feature, p. 1397.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Limite: Humans Idioma: En Revista: Cancer Discov Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Limite: Humans Idioma: En Revista: Cancer Discov Ano de publicação: 2022 Tipo de documento: Article