Your browser doesn't support javascript.
loading
Xylose and yeasts: A story beyond xylitol production.
Estrada-Ávila, Alejandra Karina; González-Hernández, Juan Carlos; Calahorra, Martha; Sánchez, Norma Silvia; Peña, Antonio.
Afiliação
  • Estrada-Ávila AK; Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, México.
  • González-Hernández JC; Tecnológico Nacional de México / Instituto Tecnológico de Morelia, Departamento de Ingeniería Química y Bioquímica, Av. Tecnológico # 1500. Colonia Lomas de Santiaguito, 58120 Morelia, Michoacán, México.
  • Calahorra M; Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, México.
  • Sánchez NS; Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, México.
  • Peña A; Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, México. Electronic address: apd@ifc.unam.mx.
Biochim Biophys Acta Gen Subj ; 1866(8): 130154, 2022 08.
Article em En | MEDLINE | ID: mdl-35461922
Six different yeasts were used to study their metabolism of glucose and xylose, and mainly their capacity to produce ethanol and xylitol. The strains used were Candida guilliermondii, Debaryomyces hansenii, Saccharomyces cerevisiae, Kluyveromyces marxianus, Meyerozyma guilliermondii and Clavispora lusitaniae, four isolated from a rural mezcal fermentation facility. All of them produced ethanol when the substrate was glucose. When incubated in a medium containing xylose instead of glucose, only K. marxianus and M. guilliermondii were able to produce ethanol from xylose. On the other hand, all of them could produce some xylitol from xylose, but the most active in this regard were K. marxianus, M. guilliermondii, C. lusitaniae, and C. guilliermondii with the highest amount of xylitol produced. The capacity of all strains to take up glucose and xylose was also studied. Xylose, in different degrees, produced a redox imbalance in all yeasts. Respiration capacity was also studied with glucose or xylose, where C. guilliermondii, D. hansenii, K. marxianus and M. guilliermondii showed higher cyanide resistant respiration when grown in xylose. Neither xylose transport nor xylitol production were enhanced by an acidic environment (pH 4), which can be interpreted as the absence of a proton/sugar symporter mechanism for xylose transport, except for C. lusitaniae. The effects produced by xylose and their magnitude depend on the background of the studied yeast and the conditions in which these are studied.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xilitol / Xilose Idioma: En Revista: Biochim Biophys Acta Gen Subj Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xilitol / Xilose Idioma: En Revista: Biochim Biophys Acta Gen Subj Ano de publicação: 2022 Tipo de documento: Article