Your browser doesn't support javascript.
loading
Improvement of automated analysis of coronary Doppler echocardiograms.
Bossenbroek, Jamie; Ueyama, Yukie; McCallinhart, Patricia E; Bartlett, Christopher W; Ray, William C; Trask, Aaron J.
Afiliação
  • Bossenbroek J; Department of Computer Science and Engineering, The Ohio State University College of Engineering, Columbus, OH, USA.
  • Ueyama Y; Battelle Center for Mathematical Medicine, Columbus, OH, USA.
  • McCallinhart PE; Center for Cardiovascular Research and The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
  • Bartlett CW; Center for Cardiovascular Research and The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
  • Ray WC; Battelle Center for Mathematical Medicine, Columbus, OH, USA.
  • Trask AJ; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
Sci Rep ; 12(1): 7490, 2022 05 06.
Article em En | MEDLINE | ID: mdl-35523823
Coronary artery disease is the leading cause of heart disease, and while it can be assessed through transthoracic Doppler echocardiography (TTDE) by observing changes in coronary flow, manual analysis of TTDE is time consuming and subject to bias. In a previous study, a program was created to automatically analyze coronary flow patterns by parsing Doppler videos into a single continuous image, binarizing and separating the image into cardiac cycles, and extracting data values from each of these cycles. The program significantly reduced variability and time to complete TTDE analysis, but some obstacles such as interfering noise and varying video sizes left room to increase the program's accuracy. The goal of this current study was to refine the existing automation algorithm and heuristics by (1) moving the program to a Python environment, (2) increasing the program's ability to handle challenging cases and video variations, and (3) removing unrepresentative cardiac cycles from the final data set. With this improved analysis, examiners can use the automatic program to easily and accurately identify the early signs of serious heart diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Cardiopatias Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Cardiopatias Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article