Your browser doesn't support javascript.
loading
RETREG1-mediated ER-phagy activation induced by glucose deprivation alleviates nucleus pulposus cell damage via ER stress pathway.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 524-536, 2022 Apr 25.
Article em En | MEDLINE | ID: mdl-35607959
ABSTRACT
Accumulating evidence indicates that ER-phagy serves as a key adaptive regulatory mechanism in response to various stress conditions. However, the exact mechanisms underlying ER-phagy in the pathogenesis of intervertebral disc degeneration remain largely unclear. In the present study, we demonstrated that RETREG1-mediated ER-phagy is induced by glucose deprivation (GD) treatment, along with ER stress activation and cell function decline. Importantly, ER-phagy was shown to be crucial for cell survival under GD conditions. Furthermore, ER stress was suggested as an upstream event of ER-phagy upon GD treatment and upregulation of ER-phagy could counteract the ER stress response. Therefore, our findings indicate that RETREG1-mediated ER-phagy activation protects against GD treatment-induced cell injury via modulating ER stress in human nucleus pulposus cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Degeneração do Disco Intervertebral / Núcleo Pulposo Limite: Humans Idioma: En Revista: Acta Biochim Biophys Sin (Shanghai) Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Degeneração do Disco Intervertebral / Núcleo Pulposo Limite: Humans Idioma: En Revista: Acta Biochim Biophys Sin (Shanghai) Ano de publicação: 2022 Tipo de documento: Article