A vaccine targeting resistant tumours by dual T cell plus NK cell attack.
Nature
; 606(7916): 992-998, 2022 06.
Article
em En
| MEDLINE
| ID: mdl-35614223
Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
1_ASSA2030
/
2_ODS3
Base de dados:
MEDLINE
Assunto principal:
Dermatopatias Genéticas
/
Síndromes Mielodisplásicas
/
Vacinas
/
Neoplasias
Limite:
Humans
Idioma:
En
Revista:
Nature
Ano de publicação:
2022
Tipo de documento:
Article