Your browser doesn't support javascript.
loading
Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model.
Uehlein, Markus; Weber, Sebastian T; Rethfeld, Baerbel.
Afiliação
  • Uehlein M; Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany.
  • Weber ST; Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany.
  • Rethfeld B; Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Article em En | MEDLINE | ID: mdl-35630877
ABSTRACT
When an ultrashort laser pulse excites a metal surface, only a few of all the free electrons absorb a photon. The resulting non-equilibrium electron energy distribution thermalizes quickly to a hot Fermi distribution. The further energy dissipation is usually described in the framework of a two-temperature model, considering the phonons of the crystal lattice as a second subsystem. Here, we present an extension of the two-temperature model including the non-equilibrium electrons as a third subsystem. The model was proposed initially by E. Carpene and later improved by G.D. Tsibidis. We introduce further refinements, in particular, a temperature-dependent electron-electron thermalization time and an extended energy interval for the excitation function. We show results comparing the transient energy densities as well as the energy-transfer rates of the original equilibrium two-temperature description and the improved extended two-temperature model, respectively. Looking at the energy distribution of all electrons, we find good agreement in the non-equilibrium distribution of the extended two-temperature model with results from a kinetic description solving full Boltzmann collision integrals. The model provides a convenient tool to trace non-equilibrium electrons at small computational effort. As an example, we determine the dynamics of high-energy electrons observable in photo-electron spectroscopy. The comparison of the calculated spectral densities with experimental results demonstrates the necessity of considering electronic non-equilibrium distributions and electron-electron thermalization processes in time- and energy-resolved analyses.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2022 Tipo de documento: Article