Your browser doesn't support javascript.
loading
Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging.
Di Credico, Andrea; Perpetuini, David; Izzicupo, Pascal; Gaggi, Giulia; Cardone, Daniela; Filippini, Chiara; Merla, Arcangelo; Ghinassi, Barbara; Di Baldassarre, Angela.
Afiliação
  • Di Credico A; Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Perpetuini D; Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Izzicupo P; Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Gaggi G; Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Cardone D; Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Filippini C; Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Merla A; Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Ghinassi B; Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
  • Di Baldassarre A; Department of Engineering and Geology, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy.
Front Cardiovasc Med ; 9: 893374, 2022.
Article em En | MEDLINE | ID: mdl-35656402
Heart rate variability (HRV) is a reliable tool for the evaluation of several physiological factors modulating the heart rate (HR). Importantly, variations of HRV parameters may be indicative of cardiac diseases and altered psychophysiological conditions. Recently, several studies focused on procedures for contactless HR measurements from facial videos. However, the performances of these methods decrease when illumination is poor. Infrared thermography (IRT) could be useful to overcome this limitation. In fact, IRT can measure the infrared radiations emitted by the skin, working properly even in no visible light illumination conditions. This study investigated the capability of facial IRT to estimate HRV parameters through a face tracking algorithm and a cross-validated machine learning approach, employing photoplethysmography (PPG) as the gold standard for the HR evaluation. The results demonstrated a good capability of facial IRT in estimating HRV parameters. Particularly, strong correlations between the estimated and measured HR (r = 0.7), RR intervals (r = 0.67), TINN (r = 0.71), and pNN50 (%) (r = 0.70) were found, whereas moderate correlations for RMSSD (r = 0.58), SDNN (r = 0.44), and LF/HF (r = 0.48) were discovered. The proposed procedure allows for a contactless estimation of the HRV that could be beneficial for evaluating both cardiac and general health status in subjects or conditions where contact probe sensors cannot be used.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Aspecto: Patient_preference Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Aspecto: Patient_preference Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2022 Tipo de documento: Article