Your browser doesn't support javascript.
loading
Discovery of Mesoionic Derivatives Containing a Dithioacetal Skeleton as Novel Potential Antibacterial Agents and Mechanism Research.
Guo, Haomo; Wu, Sikai; Song, Runjiang; Liu, Ting; He, Siqi; Song, Baoan; Hu, Deyu.
Afiliação
  • Guo H; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Wu S; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Song R; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Liu T; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • He S; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Song B; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Hu D; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
J Agric Food Chem ; 70(23): 7015-7028, 2022 Jun 15.
Article em En | MEDLINE | ID: mdl-35658411
ABSTRACT
In this study, the design and synthesis of novel pyrido[1,2-a]pyrimidinone mesoionic derivatives incorporating dithioacetal structures were carried out. The three-dimensional quantitative structure-activity relationship (3D-QSAR) model was built according to the EC50 values and directed the synthesis of compound A32. The biological activity test against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) indicated that compound A32 showed good antibacterial activity with EC50 values of 10.9 and 17.5 mg/L, which were lower than the EC50 values of bismerthiazol (29.3 and 39.8 mg/L) and thiodiazole copper (64.8 and 78.1 mg/L). Furthermore, the in vivo antibacterial activity against bacterial leaf blight (BLB) and bacterial leaf streak (BLS) revealed that the protective activity of compound A32 was 43.9 and 41.7%, respectively, which was better than the protective activity of thiodiazole copper (40.6 and 35.0%). In addition, the protective activity against bacterial leaf blight of compound A32 was associated with the increasing rice defensive enzyme activity and the upregulation of proteins involved in oxidative phosphorylation. Moreover, compound A32 could upregulate the expression of complex I (nicotinamide adenine dinucleotide hydrogen (NADH) dehydrogenase) in the oxidative phosphorylation pathway, which was verified by complex I activity evaluation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Xanthomonas Idioma: En Revista: J Agric Food Chem Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Xanthomonas Idioma: En Revista: J Agric Food Chem Ano de publicação: 2022 Tipo de documento: Article