Your browser doesn't support javascript.
loading
Alginate industrial waste streams as a promising source of value-added compounds valorization.
Bojorges, Hylenne; Fabra, Maria José; López-Rubio, Amparo; Martínez-Abad, Antonio.
Afiliação
  • Bojorges H; Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain.
  • Fabra MJ; Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid,
  • López-Rubio A; Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid,
  • Martínez-Abad A; Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid,
Sci Total Environ ; 838(Pt 3): 156394, 2022 Sep 10.
Article em En | MEDLINE | ID: mdl-35660439
ABSTRACT
The alginate industry processes more than hundred thousand tons per year of algae in Europe, discarding around 80% of the algae biomass as different solid/liquid residual streams. In this work, Saccharina latissima and Ascophyllum nodosum, their generated alginates and all residual fractions generated in the process were characterized in terms of lipid, ash, protein content, and the carbohydrate composition and antioxidant capacities analyzed. The first fraction after acid treatment (ca. 50% of the initial dry biomass) was rich in phlorotannins (15 mg GAE/g) and bioactive fucoidans (15-70%), with a high sulfation degree in A. nodosum. Two fractions generated from the solid residue, one soluble and another insoluble (Ra and Rb, respectively), constituted 9% and 5-8% of the initial biomass and showed great potential as a source of soluble protein (30% for S. latissima), and cellulose (70%) or fucoidan, respectively. Valorization strategies are suggested for these waste streams, evidencing their high potential as bioactive, texturizing or nutritional added-value ingredients for cosmetic, food, feed or pharmaceutical applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ascophyllum / Phaeophyceae Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ascophyllum / Phaeophyceae Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article