Your browser doesn't support javascript.
loading
Structural transitions and magnetic response of supramolecular magnetic polymerlike structures with bidisperse monomers.
Novak, Ekaterina V; Pyanzina, Elena S; Gupalo, Marina A; Mauser, Norbert J; Kantorovich, Sofia S.
Afiliação
  • Novak EV; Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation.
  • Pyanzina ES; Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation.
  • Gupalo MA; Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation.
  • Mauser NJ; Research Platform MMM Mathematics-Magnetism-Material, c/o Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria.
  • Kantorovich SS; Faculty of Physics, Computational and Soft Matter Physics, University of Vienna, 1090 Vienna, Austria.
Phys Rev E ; 105(5-1): 054601, 2022 May.
Article em En | MEDLINE | ID: mdl-35706172
ABSTRACT
Supramolecular magnetic polymerlike (SMP) structures are nanoscaled objects that combine the flexibility of polymeric conformations and controllability of magnetic nanoparticles. The advantage provided by the presence of permanent cross-linkers is that even at high temperature, a condition at which entropy dominates over magnetic interactions, the length and the topology of the SMP structures are preserved. On cooling, however, preexistent bonds constrain thermodynamically equilibrium configurations, making a low-temperature regime for SMP structures worth investigating in detail. Moreover, making SMP structures with perfectly monodisperse monomers has been a challenge. Thus, the second open problem in the application of SMP structures is the missing understanding of the polydispersity impact on their structural and magnetic properties. Here extensive Langevin dynamics simulations combined with parallel tempering method are used to investigate SMP structures of four different types, i.e., chainlike, Y-like, X-like, and ringlike, composed of monomers of two different sizes. Our results show that the presence of small particles in SMP structures can qualitatively change the magnetic response at low temperature, making those structures surprisingly more magnetically responsive than their monodisperse counterparts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Ano de publicação: 2022 Tipo de documento: Article