Your browser doesn't support javascript.
loading
Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction.
Vishnepolsky, Boris; Grigolava, Maya; Managadze, Grigol; Gabrielian, Andrei; Rosenthal, Alex; Hurt, Darrell E; Tartakovsky, Michael; Pirtskhalava, Malak.
Afiliação
  • Vishnepolsky B; Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia.
  • Grigolava M; Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia.
  • Managadze G; Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia.
  • Gabrielian A; Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Rosenthal A; Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Hurt DE; Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Tartakovsky M; Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Pirtskhalava M; Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia.
Brief Bioinform ; 23(4)2022 07 18.
Article em En | MEDLINE | ID: mdl-35724561
ABSTRACT
The evolution of drug-resistant pathogenic microbial species is a major global health concern. Naturally occurring, antimicrobial peptides (AMPs) are considered promising candidates to address antibiotic resistance problems. A variety of computational methods have been developed to accurately predict AMPs. The majority of such methods are not microbial strain specific (MSS) they can predict whether a given peptide is active against some microbe, but cannot accurately calculate whether such peptide would be active against a particular MS. Due to insufficient data on most MS, only a few MSS predictive models have been developed so far. To overcome this problem, we developed a novel approach that allows to improve MSS predictive models (MSSPM), based on properties, computed for AMP sequences and characteristics of genomes, computed for target MS. New models can perform predictions of AMPs for MS that do not have data on peptides tested on them. We tested various types of feature engineering as well as different machine learning (ML) algorithms to compare the predictive abilities of resulting models. Among the ML algorithms, Random Forest and AdaBoost performed best. By using genome characteristics as additional features, the performance for all models increased relative to models relying on AMP sequence-based properties only. Our novel MSS AMP predictor is freely accessible as part of DBAASP database resource at http//dbaasp.org/prediction/genome.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Peptídeos Catiônicos Antimicrobianos / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Peptídeos Catiônicos Antimicrobianos / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Ano de publicação: 2022 Tipo de documento: Article