Trapping and releasing of single microparticles and cells in a microfluidic chip.
Electrophoresis
; 43(21-22): 2165-2174, 2022 11.
Article
em En
| MEDLINE
| ID: mdl-35730632
A microfluidic device was designed and fabricated to capture single microparticles and cells by using hydrodynamic force and selectively release the microparticles and cells of interest via negative dielectrophoresis by activating selected individual microelectrodes. The trap microstructure was optimized based on numerical simulation of the electric field as well as the flow field. The capture and selective release functions of the device were verified by multi-types microparticles with different diameters and K562 cells. The capture efficiencies/release efficiencies were 95.55% ± 0.43%/96.41% ± 1.08% and 91.34% ± 0.01%/93.67% ± 0.36% for microparticles and cells, respectively. By including more traps and microelectrodes, the device can achieve high throughput and realize the visual separation of microparticles/cells of interest in a large number of particle/cell groups.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Microfluídica
/
Técnicas Analíticas Microfluídicas
Idioma:
En
Revista:
Electrophoresis
Ano de publicação:
2022
Tipo de documento:
Article