Your browser doesn't support javascript.
loading
The Role of Roller Rotation Pattern in the Spreading Process of Polymer/Short-Fiber Composite Powder in Selective Laser Sintering.
Cheng, Tan; Chen, Hui; Wei, Qingsong.
Afiliação
  • Cheng T; State Key Lab of Materials Forming and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Chen H; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
  • Wei Q; State Key Lab of Materials Forming and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Polymers (Basel) ; 14(12)2022 Jun 09.
Article em En | MEDLINE | ID: mdl-35745919
In this study, for the first time, a forward-rotating roller is proposed for the spreading of CF/PA12 composite powder in the selective laser sintering (SLS) process. The mesoscopic kinetic mechanism of composite particle spreading is investigated by utilizing the "multi-spherical" element within the discrete element method (DEM). The commercial software EDEM and the open-source DEM particle simulation code LIGGGHTS-PUBLIC are used for the simulations in this work. It is found that the forward-rotating roller produces a strong compaction on the powder pile than does the conventional counter-rotating roller, thus increasing the coordination number and mass flow rate of the particle flow, which significantly improves the powder bed quality. In addition, the forward-rotating pattern generates a braking friction force on the particles in the opposite direction to their spread, which affects the particle dynamics and deposition process. Therefore, appropriately increasing the roller rotation speed to make this force comparable to the roller dragging force could result in faster deposition of the composite particles to form a stable powder bed. This mechanism allows the forward-rotating roller to maintain a good powder bed quality, even at a high spreading speed, thus providing greater potential for the industry to improve the spreading efficiency of the SLS process.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2022 Tipo de documento: Article