Your browser doesn't support javascript.
loading
Future trends and patterns in leachate biological treatment research from a bibliometric perspective.
Ilmasari, Dhaneswara; Sahabudin, Eri; Riyadi, Fatimah Azizah; Abdullah, Norhayati; Yuzir, Ali.
Afiliação
  • Ilmasari D; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
  • Sahabudin E; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
  • Riyadi FA; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
  • Abdullah N; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; UTM International, Aras 8 Menara Razak, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Ma
  • Yuzir A; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia. Electronic address: muhdaliyuzir@utm.my.
J Environ Manage ; 318: 115594, 2022 Sep 15.
Article em En | MEDLINE | ID: mdl-35759967
ABSTRACT
Leachate has become a great deal of concern due to its complex properties which are primarily caused by the high concentrations of organics and ammonia. Thus, proper leachate treatment is required prior to its discharge. Leachate can be treated in various ways, and biological treatment is one of the approaches. This treatment has been shown to be both effective and cost-efficient while offering the possibility of resource recovery in the form of bioenergy. In this study, the underlying patterns in publications related to leachate biological treatment were uncovered through bibliometric analysis. This study also lays the groundwork for a deeper understanding of the past, current, and future trends of the leachate biological treatment. Research publications from 1974 to 2021 were retrieved from the Scopus database, and it was identified that 2013 articles were published in the span of 47 years. From the analyzed publications, China played a leading role in publishing leachate biological treatment research articles as well as having the most productive institutions and authors. Meanwhile, the USA was found to be the most active country in initiating international collaborations with 33 countries. The research hotspots were also successfully identified using keyword co-occurrences analysis. Anaerobic digestion and constructed wetland were revealed to be the research hotspots. The critical role of biological treatment in removing nitrogen from leachate was also highlighted. Besides, numerous research gaps were identified in the application of aerobic granular sludge (AGS) for leachate treatment. This can be a potential area for research in the future. Finally, future research should be encouraged to focus on the use of sustainable treatment systems in which energy recovery in the form of biogases is promoted.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Bibliometria Idioma: En Revista: J Environ Manage Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Bibliometria Idioma: En Revista: J Environ Manage Ano de publicação: 2022 Tipo de documento: Article