Your browser doesn't support javascript.
loading
New Insights into Human Biotransformation of BDE-209: Unique Occurrence of Metabolites of Ortho-Substituted Hydroxylated Higher Brominated Diphenyl Ethers in the Serum of e-Waste Dismantlers.
Ma, Shengtao; Ren, Guofa; Zheng, Kewen; Cui, Juntao; Li, Pei; Huang, Xiaomei; Lin, Meiqing; Liu, Ranran; Yuan, Jing; Yin, Wenjun; Peng, Ping'an; Sheng, Guoying; Yu, Zhiqiang.
Afiliação
  • Ma S; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Ren G; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Zheng K; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
  • Cui J; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
  • Li P; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Huang X; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Lin M; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Liu R; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Yuan J; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Yin W; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Peng P; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Sheng G; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
  • Yu Z; University of Chinese Academy of Sciences, Beijing 100039, China.
Environ Sci Technol ; 56(14): 10239-10248, 2022 07 19.
Article em En | MEDLINE | ID: mdl-35790344
Extremely high levels of decabromodiphenyl ether (BDE-209) are frequently found in the serum of occupationally exposed groups, such as e-waste dismantlers and firefighters. However, the metabolism of BDE-209 in the human body is not adequately studied. In this study, 24 serum samples were collected from workers at a typical e-waste recycling workshop in Taizhou, Eastern China, and the occurrence and fate of these higher brominated diphenyl ethers (PBDEs) were investigated. The median concentration of the total PBDEs in the serum was 199 ng/g lipid weight (lw), ranging from 125 to 622 ng/g lw. Higher brominated octa- to deca-BDEs accounted for more than 80% of the total PBDEs. Three ortho-hydroxylated metabolites of PBDEs─6-OH-BDE196, 6-OH-BDE199, and 6'-OH-BDE206─were widely detected with a total concentration (median) of 92.7 ng/g lw. The concentrations of the three OH-PBDEs were significantly higher than their octa- and nona-PBDE homologues, even exceeding those of the total PBDEs in several samples, indicating that the formation of OH-PBDEs was a major metabolic pathway of the higher brominated PBDEs in occupationally exposed workers. An almost linear correlation between 6-OH-BDE196 and 6-OH-BDE199 (R = 0.971, P < 0.001) indicates that they might undergo a similar biotransformation pathway in the human body or may be derived from the same precursor. In addition, the occurrence of a series of penta- to hepta- ortho-substituted OH-PBDEs was preliminarily identified according to their unique "predioxin" mass spectral profiles by GC-ECNI-MS. Taken together, the tentative metabolic pathway for BDE-209 in e-waste dismantlers was proposed. The oxidative metabolism of BDE-209 was mainly observed at the ortho positions to form 6'-OH-BDE-206, which later underwent a consecutive loss of bromine atoms at the meta or para positions to generate other ortho-OH-PBDEs. Further studies are urgently needed to identify the chemical structures of these ortho-OH-PBDE metabolites, and perhaps more importantly to clarify the potentially toxic effects, along with their underlying molecular mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 12_ODS3_hazardous_contamination / 2_ODS3 Base de dados: MEDLINE Assunto principal: Éteres Difenil Halogenados / Resíduo Eletrônico Limite: Humans Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 12_ODS3_hazardous_contamination / 2_ODS3 Base de dados: MEDLINE Assunto principal: Éteres Difenil Halogenados / Resíduo Eletrônico Limite: Humans Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article