Your browser doesn't support javascript.
loading
Effect of Magnetic Impurities on Superconductivity in LaH10.
Semenok, Dmitrii V; Troyan, Ivan A; Sadakov, Andrey V; Zhou, Di; Galasso, Michele; Kvashnin, Alexander G; Ivanova, Anna G; Kruglov, Ivan A; Bykov, Alexey A; Terent'ev, Konstantin Y; Cherepakhin, Alexander V; Sobolevskiy, Oleg A; Pervakov, Kirill S; Seregin, Alexey Yu; Helm, Toni; Förster, Tobias; Grockowiak, Audrey D; Tozer, Stanley W; Nakamoto, Yuki; Shimizu, Katsuya; Pudalov, Vladimir M; Lyubutin, Igor S; Oganov, Artem R.
Afiliação
  • Semenok DV; Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russia.
  • Troyan IA; Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow, 119333, Russia.
  • Sadakov AV; V.L. Ginzburg Center for High-Temperature Superconductivity and Quantum Materials, P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russia.
  • Zhou D; Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russia.
  • Galasso M; Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russia.
  • Kvashnin AG; Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russia.
  • Ivanova AG; Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow, 119333, Russia.
  • Kruglov IA; Center for Fundamental and Applied Research, Dukhov Research Institute of Automatics (VNIIA), st. Sushchevskaya, 22, Moscow, 127055, Russia.
  • Bykov AA; Laboratory of Computational Materials Discovery, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny, 141700, Russia.
  • Terent'ev KY; Crystal Physics Laboratory, NRC "Kurchatov Institute" PNPI, 1, mkr. Orlova roshcha, Gatchina, 188300, Russia.
  • Cherepakhin AV; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russia.
  • Sobolevskiy OA; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russia.
  • Pervakov KS; V.L. Ginzburg Center for High-Temperature Superconductivity and Quantum Materials, P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russia.
  • Seregin AY; V.L. Ginzburg Center for High-Temperature Superconductivity and Quantum Materials, P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russia.
  • Helm T; Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow, 119333, Russia.
  • Förster T; Synchrotron radiation source "KISI-Kurchatov", National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
  • Grockowiak AD; Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.
  • Tozer SW; Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.
  • Nakamoto Y; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
  • Shimizu K; Brazilian Synchrotron Light Laboratory (LNLS/Sirius), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, Brazil.
  • Pudalov VM; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
  • Lyubutin IS; KYOKUGEN, Graduate School of Engineering Science, Osaka University, Machikaneyamacho 1-3, Toyonaka, Osaka, 560-8531, Japan.
  • Oganov AR; KYOKUGEN, Graduate School of Engineering Science, Osaka University, Machikaneyamacho 1-3, Toyonaka, Osaka, 560-8531, Japan.
Adv Mater ; 34(42): e2204038, 2022 Oct.
Article em En | MEDLINE | ID: mdl-35829689
ABSTRACT
Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10 , encounters a serious complication because of the large upper critical magnetic field HC2 (0), exceeding 120-160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10 each at% of Nd causes a decrease in TC by 10-11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2 (T) âˆ |T - TC |, which calls into question the applicability of the Werthamer-Helfand-Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron-phonon pairing in lanthanum decahydride.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2022 Tipo de documento: Article