Your browser doesn't support javascript.
loading
Controllable Inverse Photoconductance in Semiconducting Nanowire Films.
Wang, Rui; Wang, Jin-Long; Liu, Tian; He, Zhen; Wang, Heng; Liu, Jian-Wei; Yu, Shu-Hong.
Afiliação
  • Wang R; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 2
  • Wang JL; Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
  • Liu T; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 2
  • He Z; Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
  • Wang H; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 2
  • Liu JW; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 2
  • Yu SH; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 2
Adv Mater ; 34(36): e2204698, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35854411
As a typical p-type semiconductor, tellurium (Te) has been widely studied for the construction of photodetectors. However, only the positive photoconductance of Te-based photodetectors based on the photoconductive effect has been observed in the reported literature. Herein, an unusual but interesting phenomenon, in that tellurium nanowires (NWs) behave with negative photoresponse to positive photoresponse under enlarged optical intensities from the UV to VIS-IR region is reported. According to the experiments and simulations, adsorbed oxygen on the surface of Te NWs plays a significant role in the abnormal photoresponse. The inverse photoconductance can be attributed to the competition between the photoconductive effect and the oxygen desorption effect. Moreover, the influence of the size and layers of Te NWs is also discussed. This inverse photoconductance phenomenon is further explored by introducing the Te-Au heterojunction system. Hot-electron injection at the Te-Au heterojunction interface induces a more obvious tendency to behave with a negative photoresponse. These findings will be beneficial for potential applications of Te-NW-based photodetectors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2022 Tipo de documento: Article