Your browser doesn't support javascript.
loading
Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications.
Fenno, Lief E; Levy, Rivka; Yizhar, Ofer.
Afiliação
  • Fenno LE; Departments of Psychiatry and Neuroscience, University of Texas Austin Dell Medical School, Austin, TX, USA.
  • Levy R; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
  • Yizhar O; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel. ofer.yizhar@weizmann.ac.il.
Methods Mol Biol ; 2501: 289-310, 2022.
Article em En | MEDLINE | ID: mdl-35857234
ABSTRACT
There is no question that genetically encoded tools have revolutionized neuroscience. These include optically modulated tools for writing-in (optogenetics) and reading-out (calcium, voltage, and neurotransmitter indicators) neural activity as well as precision expression of these reagents using virally mediated delivery. With few exceptions, these powerful approaches are derived from naturally occurring molecules that are sourced from diverse organisms that span all kingdoms of life. Successful expression of genetic tools in standard neuroscience model organisms requires optimizing gene structure, taking into account differences in both protein translation and trafficking. Myriad approaches have resolved these two challenges, resulting in order-of-magnitude increases in functional expression. In this chapter, we focus on synthesizing prior experience in successfully enabling the transition of genes across kingdoms with a goal of facilitating the production of the next generation of molecular tools for neuroscience. We then provide a detailed protocol that allows expression and testing of novel genetically encoded tools in mammalian cell lines and primary cultured neurons.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rodopsina / Neurociências Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Methods Mol Biol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rodopsina / Neurociências Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Methods Mol Biol Ano de publicação: 2022 Tipo de documento: Article