Your browser doesn't support javascript.
loading
A DNA origami rotary ratchet motor.
Pumm, Anna-Katharina; Engelen, Wouter; Kopperger, Enzo; Isensee, Jonas; Vogt, Matthias; Kozina, Viktorija; Kube, Massimo; Honemann, Maximilian N; Bertosin, Eva; Langecker, Martin; Golestanian, Ramin; Simmel, Friedrich C; Dietz, Hendrik.
Afiliação
  • Pumm AK; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department & Munich Institute of Biomedical Engineering, Technische Universität München, Garching near Munich, Germany.
  • Engelen W; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department & Munich Institute of Biomedical Engineering, Technische Universität München, Garching near Munich, Germany.
  • Kopperger E; Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München, Garching near Munich, Germany.
  • Isensee J; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
  • Vogt M; Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München, Garching near Munich, Germany.
  • Kozina V; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department & Munich Institute of Biomedical Engineering, Technische Universität München, Garching near Munich, Germany.
  • Kube M; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department & Munich Institute of Biomedical Engineering, Technische Universität München, Garching near Munich, Germany.
  • Honemann MN; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department & Munich Institute of Biomedical Engineering, Technische Universität München, Garching near Munich, Germany.
  • Bertosin E; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department & Munich Institute of Biomedical Engineering, Technische Universität München, Garching near Munich, Germany.
  • Langecker M; Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München, Garching near Munich, Germany.
  • Golestanian R; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany. ramin.golestanian@ds.mpg.de.
  • Simmel FC; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK. ramin.golestanian@ds.mpg.de.
  • Dietz H; Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München, Garching near Munich, Germany. simmel@tum.de.
Nature ; 607(7919): 492-498, 2022 07.
Article em En | MEDLINE | ID: mdl-35859200
ABSTRACT
To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Proteínas Motores Moleculares / Difusão Facilitada Idioma: En Revista: Nature Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Proteínas Motores Moleculares / Difusão Facilitada Idioma: En Revista: Nature Ano de publicação: 2022 Tipo de documento: Article