Your browser doesn't support javascript.
loading
Secretagogin is a Ca2+-dependent stress-responsive chaperone that may also play a role in aggregation-based proteinopathies.
Chidananda, Amrutha H; Khandelwal, Radhika; Jamkhindikar, Aditya; Pawar, Asmita D; Sharma, Anand K; Sharma, Yogendra.
Afiliação
  • Chidananda AH; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.
  • Khandelwal R; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
  • Jamkhindikar A; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.
  • Pawar AD; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India.
  • Sharma AK; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India. Electronic address: anand.sharma@hest.ethz.ch.
  • Sharma Y; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India. Electronic address: yogendra@iiserbpr.ac.
J Biol Chem ; 298(9): 102285, 2022 09.
Article em En | MEDLINE | ID: mdl-35870554
ABSTRACT
Secretagogin (SCGN) is a three-domain hexa-EF-hand Ca2+-binding protein that plays a regulatory role in the release of several hormones. SCGN is expressed largely in pancreatic ß-cells, certain parts of the brain, and also in neuroendocrine tissues. The expression of SCGN is altered in several diseases, such as diabetes, cancers, and neurodegenerative disorders; however, the precise associations that closely link SCGN expression to such pathophysiologies are not known. In this work, we report that SCGN is an early responder to cellular stress, and SCGN expression is temporally upregulated by oxidative stress and heat shock. We show the overexpression of SCGN efficiently prevents cells from heat shock and oxidative damage. We further demonstrate that in the presence of Ca2+, SCGN efficiently prevents the aggregation of a broad range of model proteins in vitro. Small-angle X-ray scattering (BioSAXS) studies further reveal that Ca2+ induces the conversion of a closed compact apo-SCGN conformation into an open extended holo-SCGN conformation via multistate intermediates, consistent with the augmentation of chaperone activity of SCGN. Furthermore, isothermal titration calorimetry establishes that Ca2+ enables SCGN to bind α-synuclein and insulin, two target proteins of SCGN. Altogether, our data not only demonstrate that SCGN is a Ca2+-dependent generic molecular chaperone involved in protein homeostasis with broad substrate specificity but also elucidate the origin of its altered expression in several cancers. We describe a plausible mechanism of how perturbations in Ca2+ homeostasis and/or deregulated SCGN expression would hasten the process of protein misfolding, which is a feature of many aggregation-based proteinopathies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Estresse Oxidativo / Chaperonas Moleculares / Resposta ao Choque Térmico / Motivos EF Hand / Células Secretoras de Insulina / Deficiências na Proteostase / Secretagoginas / Agregação Patológica de Proteínas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Estresse Oxidativo / Chaperonas Moleculares / Resposta ao Choque Térmico / Motivos EF Hand / Células Secretoras de Insulina / Deficiências na Proteostase / Secretagoginas / Agregação Patológica de Proteínas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2022 Tipo de documento: Article