Your browser doesn't support javascript.
loading
Synthesis of a Selectively Nb-Doped WS2-MoS2 Lateral Heterostructure for a High-Detectivity PN Photodiode.
Vu, Van Tu; Phan, Thanh Luan; Vu, Thi Thanh Huong; Park, Mi Hyang; Do, Van Dam; Bui, Viet Quoc; Kim, Kunnyun; Lee, Young Hee; Yu, Woo Jong.
Afiliação
  • Vu VT; Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Phan TL; Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Vu TTH; Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Park MH; Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Do VD; Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Bui VQ; Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Kim K; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Lee YH; Korea Electronics Technology Institute, Seongnam, 13509, Republic of Korea.
  • Yu WJ; Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
ACS Nano ; 16(8): 12073-12082, 2022 Aug 23.
Article em En | MEDLINE | ID: mdl-35913119
ABSTRACT
In this study, selective Nb doping (P-type) at the WS2 layer in a WS2-MoS2 lateral heterostructure via a chemical vapor deposition (CVD) method using a solution-phase precursor containing W, Mo, and Nb atoms is proposed. The different chemical activity reactivity (MoO3 > WO3 > Nb2O5) enable the separation of the growth temperature of intrinsic MoS2 to 700 °C (first grown inner layer) and Nb-doped WS2 to 800 °C (second grown outer layer). By controlling the Nb/(W+Nb) molar ratio in the solution precursor, the hole carrier density in the p-type WS2 layer is selectively controlled from approximately 1.87 × 107/cm2 at 1.5 at.% Nb to approximately 1.16 × 1013/cm2 at 8.1 at.% Nb, while the electron carrier density in n-type MoS2 shows negligible change with variation of the Nb molar ratio. As a result, the electrical behavior of the WS2-MoS2 heterostructure transforms from the N-N junction (0 at.% Nb) to the P-N junction (4.5 at.% Nb) and the P-N tunnel junction (8.1 at.% Nb). The band-to-band tunneling at the P-N tunnel junction (8.1 at.% Nb) is eliminated by applying negative gate bias, resulting in a maximum rectification ratio (105) and a minimum channel resistance (108 Ω). With this optimized photodiode (8.1 at.% Nb at Vg = -30 V), an Iphoto/Idark ratio of 6000 and a detectivity of 1.1 × 1014 Jones are achieved, which are approximately 20 and 3 times higher, respectively, than the previously reported highest values for CVD-grown transition-metal dichalcogenide P-N junctions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2022 Tipo de documento: Article