Your browser doesn't support javascript.
loading
The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds.
Duan, Ruiping; Wang, Yimeng; Su, Danning; Wang, Ziqiang; Zhang, Yiyun; Du, Bo; Liu, Lingrong; Li, Xuemin; Zhang, Qiqing.
Afiliação
  • Duan R; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Wang Y; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Su D; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Wang Z; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Zhang Y; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Du B; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Liu L; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China.
  • Li X; The Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering. 236 Baidi Road, NanKai District, Tianjin, PR China. Electronic address: lixuemin-7205@vip.sina.com.
  • Zhang Q; Institute of Biomedical Engineering, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, PR China. Electronic address: zhangqiq@126.com.
Biomater Adv ; 138: 212948, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35913240
ABSTRACT
Blending poly (l-lactic acid, PLLA) with poly (l-lactide-co-caprolactone, PLCL) is an effective strategy for developing new PLCL/PLLA blend based biomaterials. However, the effect of PLLA on in vivo performance of PLCL/PLLA blends is unclear yet. To address this issue, in this study, the effect of PLLA on in vivo biodegradability and biocompatibility of 3D-printed scaffolds of PLCL/PLLA blend was investigated. Three kinds of different 3D-printed PLCL/PLLA scaffolds using different blends with different mass ratios of the polymers, were prepared and implanted subcutaneously. The shrinkage and tissue responses were monitored by ultrasonography after the implantation. 2 months post-operation, the in vivo performances of the scaffolds were investigated histologically. All scaffolds showed good biocompatibility and allowed fast tissues ingrowth, however PLCL50/PLLA50 scaffold with the highest PLLA ratio induced the thickest the fibrous capsule surrounding the scaffolds and highest inflammatory scores. Furthermore, it was found that the fine porous structures of all scaffolds were well maintained, indicating the 3D-printed scaffolds were degraded through a surface erosion but not bulk erosion way. However, different scaffolds showed different shrinkage and degradation ratios, and PLCL50/PLLA50 scaffold resulted in a significant shrinkage, while PLCL90/PLLA10 scaffold showed the better structural stability. Therefore, PLLA at blending different ratio had different effects on the in vivo performance of 3D-printed PLCL/PLLA scaffolds. Particularly, PLCL/PLLA scaffolds blending with low ratio of PLLA, such as PLCL90/PLLA10 scaffold showed better application potential in tissue engineering. Our findings provide a new insight on the rational design, constrcution and application of the 3D-printed PLCL/PLLA scaffolds.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alicerces Teciduais / Impressão Tridimensional Idioma: En Revista: Biomater Adv Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alicerces Teciduais / Impressão Tridimensional Idioma: En Revista: Biomater Adv Ano de publicação: 2022 Tipo de documento: Article