Infrared spectroscopy (NIRS and ATR-FTIR) together with multivariate classification for non-destructive differentiation between female mosquitoes of Aedes aegypti recently infected with dengue vs. uninfected females.
Acta Trop
; 235: 106633, 2022 Nov.
Article
em En
| MEDLINE
| ID: mdl-35932844
One of the most important steps in preventing arboviruses is entomological surveillance. The main entomological surveillance action is to detect vector foci in the shortest possible stages. In this work, near and medium infrared spectra collected from female Aedes aegypti mosquitoes recently infected and not infected with dengue were used in order to build chemometric models capable of differentiating the spectra of each class. For this, computational algorithms such as Successive Projection Algorithm (SPA) and Genetic Algorithm (GA) were used together with Linear Discriminant Analysis (LDA). The constructed models were evaluated with sensitivity and specificity calculations. It was observed that models based on near infrared (NIR) spectra have better classification results when compared to mid infrared (MIR) spectra, as well as models based on GA present better results when compared to those based on SPA. Thus, NIR-GA-LDA obtained the best results, reaching 100.00 % for sensitivity and specificity. NIR spectroscopy is 18 times faster and 116 times cheaper than RT-qPCR. The findings reported in this study may have important applications in the field of entomological surveillance, prevention and control of dengue vectors. In the future, mosquito traps equipped with portable NIR instruments capable of detecting infected mosquitoes may be used, in order to enable an action plan to prevent future outbreaks of the disease.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
1_ASSA2030
/
2_ODS3
/
3_ND
Base de dados:
MEDLINE
Assunto principal:
Aedes
/
Dengue
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Acta Trop
Ano de publicação:
2022
Tipo de documento:
Article