Your browser doesn't support javascript.
loading
Recyclable fluorous-tag assisted two-directional oligosaccharide synthesis enabled by interrupted Pummerer reaction mediated glycosylation.
Cai, Lei; Chen, Qi; Guo, Jian; Liang, Zhihua; Fu, Dengxian; Meng, Lingkui; Zeng, Jing; Wan, Qian.
Afiliação
  • Cai L; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Chen Q; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Guo J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Liang Z; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Fu D; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Meng L; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Zeng J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
  • Wan Q; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China wanqian@hust.edu.cn.
Chem Sci ; 13(30): 8759-8765, 2022 Aug 04.
Article em En | MEDLINE | ID: mdl-35975149
ABSTRACT
Herein, we report a novel fluorous-tag assisted two-directional oligosaccharide assembly strategy, which maintained the high coupling efficiency of solution-phase synthesis and featured the advantage of an easy purification process comparable to solid-phase synthesis. A well-designed fluorous tag was decorated on the latent anomeric leaving group in interrupted Pummerer reaction mediated (IPRm) glycosylation. The high efficiency of the in-solution phase glycosylation and the unique affinity of the fluorous tag towards polytetrafluoroethylene (PTFE) particles allowed flexible assembly from the reducing end to the non-reducing end and fast purification by PTFE-assisted filtration. Moreover, the fluorous-tagged latent anomeric leaving group could be activated by oxidation and cleaved by IPRm glycosylation, thus enabling the elongation of the carbohydrate chain from the non-reducing end to the reducing end as well as the recovery of the fluorous tag. The present two-directional synthetic strategy is used to assemble the repeating unit of Streptococcus pneumoniae type 14 capsular polysaccharide.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2022 Tipo de documento: Article