Your browser doesn't support javascript.
loading
Fermentation of NaHCO3-treated corn germ meal by Bacillus velezensis CL-4 promotes lignocellulose degradation and nutrient utilization.
Chen, Long; Chen, Wanying; Zheng, Boyu; Yu, Wei; Zheng, Lin; Qu, Zihui; Yan, Xiaogang; Wei, Bingdong; Zhao, Zijian.
Afiliação
  • Chen L; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Chen W; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Zheng B; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Yu W; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Zheng L; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Qu Z; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Yan X; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China.
  • Wei B; Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, Jilin Province, 136100, People's Republic of China. weibingdong@dlut.edu.cn.
  • Zhao Z; Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1366 Cai Yu Street, Changchun, Jilin Province, 130033, People's Republic of China. zhaojaas@163.com.
Appl Microbiol Biotechnol ; 106(18): 6077-6094, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35976426
Sodium bicarbonate pretreatment and solid-state fermentation (SSF) were used to maximize the nutritional value of corn germ meal (CGM) by inoculating it with Bacillus velezensis CL-4 (isolated from chicken cecal contents and capable of degrading lignocellulose). Based on genome sequencing, B. velezensis CL-4 has a 4,063,558 bp ring chromosome and 46.27% GC content. Furthermore, genes associated with degradation of lignocellulose degradation were detected. Pretreatment of CGM (PCGM) with sodium bicarbonate (optimized to 0.06 g/mL) neutralized low pH. Fermented and pretreated CGM (FPCGM) contained more crude protein (CP), soluble protein of trichloroacetic acid (TCA-SP), and total amino acids (aa) than CGM and PCGM. Degradation rates of cellulose and hemicellulose were reduced by 21.33 and 71.35%, respectively, after 48 h fermentation. Based on electron microscopy, FPCGM destroys the surface structure and adds small debris of the CGM substrate, due to lignocellulose breakdown. Furthermore, 2-oxoadipic acid and dimethyl sulfone were the most important metabolites during pretreatment. Concentrations of adenosine, cytidine, guanosine, S-methyl-5'-thioadenosine, and adenine decreased significantly after 48 h fermentation, whereas concentrations of probiotics, enzymes, and fatty acids (including palmitic, 16-hydroxypalmitic, and linoleic acids) were significantly improved after fermentation. In conclusion, the novel pretreatment of CGM provided a proof of concept for using B. velezensis CL-4 to degrade lignocellulose components, improve nutritional characteristics of CGM, and expand CGM lignocellulosic biological feed production. KEY POINTS: • Sodium bicarbonate (baking soda) can be used as an economical and green additive to pretreat corn germ meal; • Fermentation with B. velezensis degrades the cellulose and hemicellulose component of corn germ meal and improves its feed quality; • As a novel qualified presumption of safety (QPS) strain, B. velezensis should have broad potential applications in food and feed industries.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bicarbonato de Sódio / Zea mays Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bicarbonato de Sódio / Zea mays Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2022 Tipo de documento: Article