Your browser doesn't support javascript.
loading
Intraspecies variation of the mitochondrial genome: An evaluation for phylogenetic approaches based on the conventional choices of genes and segments on mitogenome.
Morón-López, Jesús; Vergara, Karen; Sato, Masanao; Gajardo, Gonzalo; Ueki, Shoko.
Afiliação
  • Morón-López J; Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan.
  • Vergara K; Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile.
  • Sato M; Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
  • Gajardo G; Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile.
  • Ueki S; Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan.
PLoS One ; 17(8): e0273330, 2022.
Article em En | MEDLINE | ID: mdl-35980990
ABSTRACT
Intraspecies nucleotide sequence variation is a key to understanding the evolutionary history of a species, such as the geographic distribution and population structure. To date, numerous phylogenetic and population genetics studies have been conducted based on the sequences of a gene or an intergenic region on the mitochondrial genome (mtDNA), such as cytochrome c oxidase subunits or the D-loop. To evaluate the credibility of the usage of such 'classic' markers, we compared the phylogenetic inferences based on the analyses of the partial and entire mtDNA sequences. Importantly, the phylogenetic reconstruction based on the short marker sequences did not necessarily reproduce the tree topologies based on the analyses of the entire mtDNA. In addition, analyses on the datasets of various organisms revealed that the analyses based on the classic markers yielded phylogenetic trees with poor confidence in all tested cases compared to the results based on full-length mtDNA. These results demonstrated that phylogenetic analyses based on complete mtDNA sequences yield more insightful results compared to those based on mitochondrial genes and segments. To ameliorate the shortcomings of the classic markers, we identified a segment of mtDNA that may be used as an 'approximate marker' to closely reproduce the phylogenetic inference obtained from the entire mtDNA in the case of mammalian species, which can be utilized to design amplicon-seq-based studies. Our study demonstrates the importance of the choice of mitochondrial markers for phylogenetic analyses and proposes a novel approach to choosing appropriate markers for mammalian mtDNA that reproduces the phylogenetic inferences obtained from full-length mtDNA.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Filogenia / Genoma Mitocondrial Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Filogenia / Genoma Mitocondrial Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Ano de publicação: 2022 Tipo de documento: Article