Your browser doesn't support javascript.
loading
Correction: DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction.
Thapa, Niraj; Chaudhari, Meenal; McManus, Sean; Roy, Kaushik; Newman, Robert H; Saigo, Hiroto; Kc, Dukka B.
Afiliação
  • Thapa N; Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA.
  • Chaudhari M; Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA.
  • McManus S; Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA.
  • Roy K; Department of Computer Science, North Carolina A&T State University, Greensboro, NC, USA.
  • Newman RH; Department of Biology, North Carolina A&T State University, Greensboro, NC, USA.
  • Saigo H; Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
  • Kc DB; Electrical Engineering and Computer Science Department, Wichita State University, Wichita, KS, USA. dukka.kc@wichita.edu.
BMC Bioinformatics ; 23(1): 349, 2022 Aug 22.
Article em En | MEDLINE | ID: mdl-35989317

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Ano de publicação: 2022 Tipo de documento: Article