Your browser doesn't support javascript.
loading
Redox-Responsive Polymersomes as Smart Doxorubicin Delivery Systems.
Ferrero, Carmen; Casas, Marta; Caraballo, Isidoro.
Afiliação
  • Ferrero C; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain.
  • Casas M; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain.
  • Caraballo I; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain.
Pharmaceutics ; 14(8)2022 Aug 18.
Article em En | MEDLINE | ID: mdl-36015350
ABSTRACT
Stimuli-responsive polymersomes have emerged as smart drug delivery systems for programmed release of highly cytotoxic anticancer agents such as doxorubicin hydrochloride (Dox·HCl). Recently, a biodegradable redox-responsive triblock copolymer (mPEG-PDH-mPEG) was synthesized with a central hydrophobic block containing disulfide linkages and two hydrophilic segments of poly(ethylene glycol) methyl ether. Taking advantage of the self-assembly of this amphiphilic copolymer in aqueous solution, in the present investigation we introduce a solvent-exchange method that simultaneously achieves polymersome formation and drug loading in phosphate buffer saline (10 mM, pH 7.4). Blank and drug-loaded polymersomes (5 and 10 wt.% feeding ratios) were prepared and characterized for morphology, particle size, surface charge, encapsulation efficiency and drug release behavior. Spherical vesicles of uniform size (120-190 nm) and negative zeta potentials were obtained. Dox·HCl was encapsulated into polymersomes with a remarkably high efficiency (up to 98 wt.%). In vitro drug release studies demonstrated a prolonged and diffusion-driven release at physiological conditions (~34% after 48 h). Cleavage of the disulfide bonds in the presence of 50 mM glutathione (GSH) enhanced drug release (~77%) due to the contribution of the erosion mechanism. Therefore, the designed polymersomes are promising candidates for selective drug release in the reductive environment of cancer cells.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmaceutics Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmaceutics Ano de publicação: 2022 Tipo de documento: Article