Your browser doesn't support javascript.
loading
Cavity-containing aromatic oligoamide foldamers and macrocycles: progress and future perspectives.
Sobiech, Thomas A; Zhong, Yulong; Gong, Bing.
Afiliação
  • Sobiech TA; Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA. bgong@buffalo.edu.
  • Zhong Y; Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA. bgong@buffalo.edu.
  • Gong B; Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA. bgong@buffalo.edu.
Org Biomol Chem ; 20(35): 6962-6978, 2022 09 14.
Article em En | MEDLINE | ID: mdl-36040143
As a major class of foldamers, aromatic oligoamide foldamers have attracted intense interest. The rigidity of aromatic residues and amide linkages allows the development of foldamers with readily predictable, stable conformations. Aromatic oligoamide foldamers having backbones fully constrained by intramolecular hydrogen bonds have attracted wide attention. Depending on their lengths, such foldamers adopt crescent or helical conformations with highly negative inner cavities. Cyclizing the backbone of the aromatic oligoamides affords the corresponding macrocycles which are characterised by persistent shapes and non-deformable inner cavities. With their defined, inner cavities, such aromatic oligoamide foldamers and macrocycles have served as hosts for cationic and polar guests, and as transmembrane channels for transporting ions and molecules. Recent synthetic progress resulted in the construction of multi-turn hollow helices that offer three-dimensional inner pores with adjustable depth. Reducing the number of backbone-constraining hydrogen bonds leads to oligoamides which, with their partially constrained backbones, undergo either solvent- or guest-dependent folding. One class of such aromatic olgioamide foldamders, which offer multiple backbone amide NH groups as hydrogen-bond donors, are designed to bind anions with adjustable affinities.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Amidas Idioma: En Revista: Org Biomol Chem Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Amidas Idioma: En Revista: Org Biomol Chem Ano de publicação: 2022 Tipo de documento: Article