Your browser doesn't support javascript.
loading
Mutagenic Activation of Glutathione Peroxidase-4: Approaches toward Rational Design of Allosteric Drugs.
Ma, Chunyue; Chung, Daniel J; Abramson, Dylan; Langley, David R; Thayer, Kelly M.
Afiliação
  • Ma C; Department of Mathematics & Computer Science, Wesleyan University, Middletown, Connecticut 06459, United States.
  • Chung DJ; Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States.
  • Abramson D; Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, United States.
  • Langley DR; Department of Mathematics & Computer Science, Wesleyan University, Middletown, Connecticut 06459, United States.
  • Thayer KM; Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States.
ACS Omega ; 7(34): 29587-29597, 2022 Aug 30.
Article em En | MEDLINE | ID: mdl-36061715
ABSTRACT
Glutathione peroxidase 4 (GPX4) reduces lipid hydroperoxides in lipid membranes, effectively inhibiting iron-dependent cell death or ferroptosis. The upregulation of the enzyme by the mutations at residues D21 and D23 has been suggested to be associated with higher protein activity, which confers more protection against neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Therefore, it has become an attractive target for treating and preventing neurodegenerative diseases. However, identifying means of mimicking the beneficial effects of these mutations distant from the active site constitutes a formidable challenge in moving toward therapeutics. In this study, we explore using molecular dynamics simulations to computationally map the conformational and energetic landscape of the wild-type GPX4 protein and three mutant variants to identify the allosteric networks of the enzyme. We present the conformational dynamic profile providing the desired signature behavior of the enzyme. We also discuss the implications of these findings for drug design efforts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article