Your browser doesn't support javascript.
loading
Meta-Analysis and Validation of a Colorectal Cancer Risk Prediction Model Using Deep Sequenced Fecal Metagenomes.
Obón-Santacana, Mireia; Mas-Lloret, Joan; Bars-Cortina, David; Criado-Mesas, Lourdes; Carreras-Torres, Robert; Díez-Villanueva, Anna; Moratalla-Navarro, Ferran; Guinó, Elisabet; Ibáñez-Sanz, Gemma; Rodríguez-Alonso, Lorena; Mulet-Margalef, Núria; Mata, Alfredo; García-Rodríguez, Ana; Duell, Eric J; Pimenoff, Ville Nikolai; Moreno, Victor.
Afiliação
  • Obón-Santacana M; Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
  • Mas-Lloret J; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
  • Bars-Cortina D; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
  • Criado-Mesas L; Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
  • Carreras-Torres R; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
  • Díez-Villanueva A; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
  • Moratalla-Navarro F; Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
  • Guinó E; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
  • Ibáñez-Sanz G; Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
  • Rodríguez-Alonso L; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
  • Mulet-Margalef N; Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
  • Mata A; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
  • García-Rodríguez A; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
  • Duell EJ; Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain.
  • Pimenoff VN; Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
  • Moreno V; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
Cancers (Basel) ; 14(17)2022 Aug 30.
Article em En | MEDLINE | ID: mdl-36077748
The gut microbiome is a potential modifiable risk factor for colorectal cancer (CRC). We re-analyzed all eight previously published stool sequencing data and conducted an MWAS meta-analysis. We used cross-validated LASSO predictive models to identify a microbiome signature for predicting the risk of CRC and precancerous lesions. These models were validated in a new study, Colorectal Cancer Screening (COLSCREEN), including 156 participants that were recruited in a CRC screening context. The MWAS meta-analysis identified 95 bacterial species that were statistically significantly associated with CRC (FDR < 0.05). The LASSO CRC predictive model obtained an area under the receiver operating characteristic curve (aROC) of 0.81 (95%CI: 0.78−0.83) and the validation in the COLSCREEN dataset was 0.75 (95%CI: 0.66−0.84). This model selected a total of 32 species. The aROC of this CRC-trained model to predict precancerous lesions was 0.52 (95%CI: 0.41−0.63). We have identified a signature of 32 bacterial species that have a good predictive accuracy to identify CRC but not precancerous lesions, suggesting that the identified microbes that were enriched or depleted in CRC are merely a consequence of the tumor. Further studies should focus on CRC as well as precancerous lesions with the intent to implement a microbiome signature in CRC screening programs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: Cancers (Basel) Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: Cancers (Basel) Ano de publicação: 2022 Tipo de documento: Article