Your browser doesn't support javascript.
loading
Design, synthesis, and anticancer activity of three novel palbociclib derivatives.
Li, Tian; Zhou, An-Di; Bai, Li-Fei; Zhang, Xiao-Yang; Zhou, Yu-Ting; Yang, Hai-Li; Xu, Le-Tian; Guo, Xin-Qin; Zhu, Xi-Yu; Wang, Dong-Jin; Gu, Hong-Wei; Wang, Xiao-Ming.
Afiliação
  • Li T; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Zhou AD; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Bai LF; Jiangsu Key Laboratory of Biofunction Molecule, School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China.
  • Zhang XY; Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, China.
  • Zhou YT; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Yang HL; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Xu LT; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Guo XQ; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Zhu XY; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Wang DJ; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
  • Gu HW; Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, China.
  • Wang XM; Department of Cardio-Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, School of Life Sciences, Nanjing University, Nanjing, China.
Front Oncol ; 12: 959322, 2022.
Article em En | MEDLINE | ID: mdl-36091173
ABSTRACT
Cancer is one of the most serious diseases threatening human health, so it is particularly important to develop effective tumor-targeting drugs. As the first CDK4/6 inhibitor, palbociclib effectively inhibits tumor proliferation by blocking the cell cycle to the G1 phase. 10-HCPT is a Topo I inhibitor; however, its clinical application has been greatly limited due to its high toxicity. Based on the successful development of double target inhibitors, three novel palbociclib derivatives (HP-1, HP-2, and HP-3) were designed and synthesized from Palbociclib and 10-HCPT, and their biological activities were investigated. At first, the possible binding sites of the three compounds to Topo I and CDK4/6 were predicted by molecular docking. Then, we evaluated the anti-proliferative effects of the three palbociclib derivatives. In general, human lung cancer cells were more sensitive to HP-1, HP-2, and HP-3, especially NCI-H460. In addition, cell cycle arrest and apoptosis induction were investigated by flow cytometry. The three palbociclib derivatives, especially HP-1, had obvious cell cycle arrest phenomenon on NCI-H460 cells and induced apoptosis of NCI-H460 cells significantly. In the end, it was proved that these three drugs had obvious cyclin-dependent kinase inhibitory activities. In short, all the data showed that HP-1, HP-2, and HP-3 could play anti-cancer roles by acting on dual targets and had the characteristics of high efficiencies and low toxicities, which opened up a new idea for the study of palbociclib derivatives.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Oncol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Oncol Ano de publicação: 2022 Tipo de documento: Article