Your browser doesn't support javascript.
loading
Differences in Cerebellar Volume as a Diagnostic and Prognostic Biomarker in Children and Adolescents With Epilepsy of Unknown Etiology.
Glutig, Katja; Lange, Luisa; Krüger, Paul-Christian; Gräger, Stephanie; de Vries, Heike; Brandl, Ulrich; Gaser, Christian; Mentzel, Hans-Joachim.
Afiliação
  • Glutig K; Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany.
  • Lange L; Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany.
  • Krüger PC; Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany.
  • Gräger S; Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany.
  • de Vries H; Department of Neuropediatrics, University Children's Hospital, Jena, Germany.
  • Brandl U; Department of Neuropediatrics, University Children's Hospital, Jena, Germany.
  • Gaser C; Structural Brain Mapping Group, Departments of Psychiatry and Neurology, University Hospital, Jena, Germany.
  • Mentzel HJ; Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany.
J Child Neurol ; 37(12-14): 939-948, 2022 12.
Article em En | MEDLINE | ID: mdl-36113051
ABSTRACT
INTRODUCTION AND

OBJECTIVE:

Epilepsy is one of the most common brain diseases during childhood and adolescence. Atrophy in different brain areas is possible during epilepsy. This study aimed to verify whether cerebellar volume differences could be detected by volume analysis using magnetic resonance imaging (MRI) in children with epilepsy.

METHOD:

In this retrospective study, 41 children (3.1-18.8 years) with epilepsy of unknown etiology were included (duration of epilepsy 1.9 ± 3 years). A cranial MRI with a volumetric 3-dimensional, T1-weighted sequence was used for volume analysis. The MRIs of 26 patients with headache (5.3-17.1 years) were analyzed for comparison. A volume analysis of the cerebellum was performed using region-based morphometry. Total cerebellar volume, total white and gray matter volume, and 48 regional lobules (L), separated into white and gray matter, were calculated. Cerebellar volumes are presented in relative ratios as the volume fraction of cerebellar volume to total intracranial volume CV/TIV.

RESULTS:

The ratio of overall white matter volume was significantly lower in the case group (23.93 × 10-3, P = .039). A significantly lower ratio of regional white matter volume was detected in LV right (P = .031) and left (P = .014), in LVIIIB right (P = .011) and left (P = .019), and in LVIIIA left (P = .009).

CONCLUSION:

Our results emphasize that volume analysis of the total cerebellar volume alone is insufficient to characterize cerebellar differences in children with epilepsy. Rather, in specific cerebellar region volume analysis using region-based morphometry, children with epilepsy showed significantly lower regional volumes of lobules, which are important for sensorimotor function (LV, LVIII) and higher cognitive function (crus I).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cerebelo / Epilepsia Tipo de estudo: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies Limite: Adolescent / Child / Humans Idioma: En Revista: J Child Neurol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cerebelo / Epilepsia Tipo de estudo: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies Limite: Adolescent / Child / Humans Idioma: En Revista: J Child Neurol Ano de publicação: 2022 Tipo de documento: Article