Your browser doesn't support javascript.
loading
Dynamics of heavy metals during the development and decomposition of leaves of Avicennia marina and Kandelia obovata in a subtropical mangrove swamp.
Lang, Tao; Tam, Nora Fung-Yee; Hussain, Muzammil; Ke, Xinran; Wei, Jian; Fu, Yijian; Li, Mingdang; Huang, Xiazi; Huang, Shuyan; Xiong, Zhangjing; Wu, Kunhua; Li, Fenglan; Chen, Zhiteng; Hu, Zhangli; Gao, Changjun; Yang, Qiong; Zhou, Haichao.
Afiliação
  • Lang T; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; College of Physics and Optoelectronic Engineering, Shenzhe
  • Tam NF; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China; School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China.
  • Hussain M; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; College of Physics and Optoelectronic Engineering, Shenzhe
  • Ke X; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100091 Beijing, China.
  • Wei J; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100091 Beijing, China.
  • Fu Y; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & D
  • Li M; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & D
  • Huang X; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China.
  • Huang S; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & D
  • Xiong Z; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China.
  • Wu K; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & D
  • Li F; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China; School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China.
  • Chen Z; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & D
  • Hu Z; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China.
  • Gao C; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
  • Yang Q; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China.
  • Zhou H; MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & D
Sci Total Environ ; 855: 158700, 2023 Jan 10.
Article em En | MEDLINE | ID: mdl-36113807
ABSTRACT
In mangrove wetlands, leaves make up a high proportion of the plant biomass and can accumulate heavy metals from contaminated sediment. Despite this, it is still unclear how heavy metal concentrations in leaves change as they develop and how metals in senescence leaves are recycled back into the mangrove ecosystems during decomposition. The present study aims to investigate the dynamics of six heavy metals (Cu, Zn, Cr, Ni, Cd, and Pb) in leaves of two common mangrove plants, Avicennia marina and Kandelia obovata, at different stages of development (young, mature, and senescent) and leaf litter decomposition (from 0 to 20 weeks). Based on litterbag experiments in a subtropical mangrove swamp, both plant species showed similar trends in alternations of the six heavy metals during leaf development, that was, decreased in Cu and Zn but increased in Pb, while Cr, Ni, and Cd remained steady. All heavy metals in litter gradually increased in concentration during decomposition. By the end of the 20-weeks decomposition, the concentrations of Cu, Zn, and Cd in decayed leaves were comparable to those in sediment, with Cu, Zn, and Cd at approximately 18, 75, and 0.2 mg·kg-1, respectively, while Cr (66 mg·kg-1), Ni (65 mg·kg-1), and Pb (55 mg·kg-1) were lower than those in sediment, indicating that metals were not retained in litter but recycled back to the sediment. Tannins in mangrove leaf litter might chelate heavy metals, affecting their migration and transformation of heavy metals in estuarine mangrove wetlands. The findings of our study provide insight into the interactions between toxic heavy metals and mangrove plant species during leaf development, representing the first example of how most metals would be retained in leaf litter during decomposition, thereby reducing their release to estuarine and marine ecosystems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados / Avicennia / Rhizophoraceae Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados / Avicennia / Rhizophoraceae Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article