Your browser doesn't support javascript.
loading
Series of TM-OFs as a Platform for Efficient Catalysis and Multifunctional Luminescence Sensing.
Liu, Yang; Liu, Hongyan; Shi, Xiaolei; Yan, Hui; Guo, Wenxiao; Wang, Shufang; Ma, Xiaoxue; Zhang, Lu; Kong, Lingqian; Chen, Guifang; Ju, Xiuping; Li, Xia; Yang, Yan; Zhu, Hongjie; Li, Yunwu; Dai, Fangna; Hao, Hongguo.
Afiliação
  • Liu Y; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Liu H; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Shi X; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Yan H; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Guo W; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Wang S; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Ma X; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Zhang L; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Kong L; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Chen G; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Ju X; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Li X; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Yang Y; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Zhu H; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Li Y; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
  • Dai F; College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.
  • Hao H; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China.
Inorg Chem ; 61(40): 15880-15894, 2022 Oct 10.
Article em En | MEDLINE | ID: mdl-36154014
ABSTRACT
Three novel porous transition-metal-organic frameworks (TM-OFs), formulated as [Co3(DCPN)2(µ2-OH2)4(H2O)4](DMF)2 (1), [Cd3(DCPN)2(µ2-OH2)4(H2O)4](DMF)2 (2), and [CdK(DCPN)(DMA)] (3), have been successfully prepared via solvothermal conditions based on a 5-(3',6'-dicarboxylic phenyl) nicotinic carboxylic acid (H3DCPN) ligand. 1 and 2 both have the same porous 3D network structure with the point symbol of {410·614·84}·{45·6}2 based on trinuclear ({Co3} or {Cd3}) clusters, indicating a one-dimensional porous channel, and possess excellent water and thermal stability; 3 also displays a porous 3D network structure with a 4-connected sra topology based on the heteronuclear metal cluster {CdK}. Complex 1 can be used to load Pd nanoparticles (Pd NPs) via a wetness impregnation strategy to obtain Pd@1. The reduction of nitrophenols (2-NP, 3-NP, 4-NP) by Pd@1 in aqueous solution shows outstanding conversion, excellent rate constants (k), and remarkable cycling stability due to the synergistic effect of complex 1 and Pd NPs. Luminescence sensing tests confirmed that 2 is a reliable multifunctional chemical sensor with high selectivity and sensitivity for low concentrations of Fe3+, Cr2O72-, CPFX, and NFX. Specifically, 2 shows a fluorescence enhancement behavior toward fluoroquinolone antibiotics (CPFX and NFX), which has not been reported previously in the literature. Moreover, the rational mechanism of fluorescence sensing was also systematically investigated by various detection means and theoretical calculations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estruturas Metalorgânicas Idioma: En Revista: Inorg Chem Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estruturas Metalorgânicas Idioma: En Revista: Inorg Chem Ano de publicação: 2022 Tipo de documento: Article