Your browser doesn't support javascript.
loading
High-content phenotyping of Parkinson's disease patient stem cell-derived midbrain dopaminergic neurons using machine learning classification.
Vuidel, Aurore; Cousin, Loïc; Weykopf, Beatrice; Haupt, Simone; Hanifehlou, Zahra; Wiest-Daesslé, Nicolas; Segschneider, Michaela; Lee, Joohyun; Kwon, Yong-Jun; Peitz, Michael; Ogier, Arnaud; Brino, Laurent; Brüstle, Oliver; Sommer, Peter; Wilbertz, Johannes H.
Afiliação
  • Vuidel A; Ksilink, Strasbourg, France.
  • Cousin L; Ksilink, Strasbourg, France.
  • Weykopf B; Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany; LIFE & BRAIN GmbH, Bonn, Germany.
  • Haupt S; LIFE & BRAIN GmbH, Bonn, Germany.
  • Hanifehlou Z; Ksilink, Strasbourg, France.
  • Wiest-Daesslé N; Ksilink, Strasbourg, France.
  • Segschneider M; Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
  • Lee J; Ksilink, Strasbourg, France.
  • Kwon YJ; Ksilink, Strasbourg, France.
  • Peitz M; Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
  • Ogier A; Ksilink, Strasbourg, France.
  • Brino L; Ksilink, Strasbourg, France.
  • Brüstle O; Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany; LIFE & BRAIN GmbH, Bonn, Germany.
  • Sommer P; Ksilink, Strasbourg, France.
  • Wilbertz JH; Ksilink, Strasbourg, France. Electronic address: johannes.wilbertz@ksilink.com.
Stem Cell Reports ; 17(10): 2349-2364, 2022 10 11.
Article em En | MEDLINE | ID: mdl-36179692
Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic neuron (mDAN) in vitro models. We differentiated patient-derived induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we identified elevated levels of α-synuclein (αSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial dysfunction. Next, we measured additional image-based phenotypes and used machine learning (ML) to accurately classify mDANs according to their genotype. Additionally, we show that chemical compound treatments, targeting LRRK2 kinase activity or αSyn levels, are detectable when using ML classification based on multiple image-based phenotypes. We validated our approach using a second isogenic patient-derived SNCA gene triplication mDAN model which overexpresses αSyn. This phenotyping and classification strategy improves the practical exploitability of mDANs for disease modeling and the identification of novel LRRK2-associated drug targets.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Células-Tronco Pluripotentes Induzidas Limite: Humans Idioma: En Revista: Stem Cell Reports Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Células-Tronco Pluripotentes Induzidas Limite: Humans Idioma: En Revista: Stem Cell Reports Ano de publicação: 2022 Tipo de documento: Article