Your browser doesn't support javascript.
loading
Unraveling pH Effects on Ultrafiltration Membrane Fouling by Extracellular Polymeric Substances: Adsorption and Conformation Analyzed with Localized Surface Plasmon Resonance.
Ran, Noya; Sharon-Gojman, Revital; Larsson, Sara; Gillor, Osnat; Mauter, Meagan S; Herzberg, Moshe.
Afiliação
  • Ran N; Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel.
  • Sharon-Gojman R; Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel.
  • Larsson S; Insplorion AB, Arvid Wallgrens backe 20, 413 46 Göteborg, Sweden.
  • Gillor O; Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel.
  • Mauter MS; Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States.
  • Herzberg M; Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel.
Environ Sci Technol ; 56(20): 14763-14773, 2022 10 18.
Article em En | MEDLINE | ID: mdl-36197031
ABSTRACT
Extracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor. A novel membrane-mimetic hybrid QCM-D-LSPR sensor was designed to indicate both "dry" mass and mechanical load ("wet" mass) of the adsorbed EPS. The effect of pH on the EPS layer's viscoelastic properties and hydrated thickness analyzed by QCM-D corroborates with the shift in EPS areal concentration, ΓS, and the associated EPS conformation, analyzed by LSPR. As pH elevates, the processes of (i) elevation in EPS layer's thickness (QCM-D) and (ii) decrease in the EPS areal density, ΓS (LSPR), provide a clear indication for changes in EPS conformation, which decrease the effective ultrafiltration (UF) membrane pore diameter. This decrease in the pore diameter together with the increase in surface hydrophobicity elevates UF membrane hydraulic resistance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ultrafiltração / Matriz Extracelular de Substâncias Poliméricas Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ultrafiltração / Matriz Extracelular de Substâncias Poliméricas Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article