Acquired fluconazole resistance and genetic clustering in Diutina (Candida) catenulata from clinical samples.
Clin Microbiol Infect
; 29(2): 257.e7-257.e11, 2023 Feb.
Article
em En
| MEDLINE
| ID: mdl-36209989
OBJECTIVES: Diutina (Candida) catenulata is an ascomycetous yeast isolated from environmental sources and animals, occasionally infecting humans. The aim of this study is to shed light on the in vitro antifungal susceptibility and genetic diversity of this opportunistic yeast. METHODS: Forty-five D. catenulata strains isolated from various sources (including human and environmental sources) and originating from nine countries were included. Species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and confirmed via internal transcribed spacer ribosomal DNA barcoding. In vitro antifungal susceptibility was determined for seven systemic antifungals via the gradient strip method after 48 hours of incubation at 35°C using Etest® (Biomérieux) or Liofilchem® strips. Isolates exhibiting fluconazole minimal inhibitory concentrations (MICs) of ≥8 µg/mL were investigated for mutations in the ERG11 gene. A novel microsatellite genotyping scheme consisting of four markers was developed to assess genetic diversity. RESULTS: MIC ranges for amphotericin B, caspofungin, micafungin, isavuconazole, and posaconazole were 0.19-1 µg/mL, 0.094-0.5 µg/mL, 0.012-0.064 µg/mL, 0.003-0.047 µg/mL, and 0.006-0.032 µg/mL, respectively. By comparison, a broad range of MICs was noted for fluconazole (0.75 to >256 µg/mL) and voriconazole (0.012-0.38 mg/L), the higher values being observed among clinical strains. The Y132F amino acid substitution, associated with azole resistance in various Candida species (C. albicans, C. tropicalis, C. parapsilosis, and C. orthopsilosis), was the main substitution identified. Although microsatellite typing showed extensive genetic diversity, most strains with high fluconazole MICs clustered together, suggesting human-to-human transmission or a common source of contamination. DISCUSSION: The high rate of acquired fluconazole resistance among clinical isolates of D. catenulata is of concern. In this study, we highlight a link between the genetic diversity of D. catenulata and its antifungal resistance patterns, suggesting possible clonal transmission of resistant isolates.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fluconazol
/
Antifúngicos
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Clin Microbiol Infect
Ano de publicação:
2023
Tipo de documento:
Article