Your browser doesn't support javascript.
loading
Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background.
Hugo, Leon E; Rasic, Gordana; Maynard, Andrew J; Ambrose, Luke; Liddington, Catherine; Thomas, Callum J E; Nath, Nisa Suraj; Graham, Melissa; Winterford, Clay; Wimalasiri-Yapa, B M C Randika; Xi, Zhiyong; Beebe, Nigel W; Devine, Gregor J.
Afiliação
  • Hugo LE; QIMR Berghofer, Brisbane, Queensland, Australia.
  • Rasic G; QIMR Berghofer, Brisbane, Queensland, Australia.
  • Maynard AJ; School of Biological Sciences, University of Queensland, Brisbane, Australia.
  • Ambrose L; School of Biological Sciences, University of Queensland, Brisbane, Australia.
  • Liddington C; CSIRO, Brisbane, Queensland, Australia.
  • Thomas CJE; School of Biological Sciences, University of Queensland, Brisbane, Australia.
  • Nath NS; QIMR Berghofer, Brisbane, Queensland, Australia.
  • Graham M; QIMR Berghofer, Brisbane, Queensland, Australia.
  • Winterford C; QIMR Berghofer, Brisbane, Queensland, Australia.
  • Wimalasiri-Yapa BMCR; Department of Medical Laboratory Sciences, The Open University of Sri Lanka, Colombo, Sri Lanka.
  • Xi Z; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America.
  • Beebe NW; School of Biological Sciences, University of Queensland, Brisbane, Australia.
  • Devine GJ; CSIRO, Brisbane, Queensland, Australia.
PLoS Negl Trop Dis ; 16(10): e0010786, 2022 10.
Article em En | MEDLINE | ID: mdl-36227923
ABSTRACT
Biological control of mosquito vectors using the endosymbiotic bacteria Wolbachia is an emerging strategy for the management of human arboviral diseases. We recently described the development of a strain of Aedes aegypti infected with the Wolbachia strain wAlbB (referred to as the wAlbB2-F4 strain) through simple backcrossing of wild type Australian mosquitoes with a wAlbB infected Ae. aegypti strain from the USA. Field releases of male wAlbB2-F4 mosquitoes resulted in the successful suppression of wild populations of mosquitoes in the trial sites by exploiting the strain's Wolbachia-induced cytoplasmic incompatibility. We now demonstrate that the strain is resistant to infection by dengue and Zika viruses and is genetically similar to endemic Queensland populations. There was a fourfold reduction in the proportion of wAlbB2-F4 mosquitoes that became infected following a blood meal containing dengue 2 virus (16.7%) compared to wild type mosquitoes (69.2%) and a 6-7 fold reduction in the proportion of wAlbB2-F4 mosquitoes producing virus in saliva following a blood meal containing an epidemic strain of Zika virus (8.7% in comparison to 58.3% in wild type mosquitoes). Restriction-site Associated DNA (RAD) sequencing revealed that wAlbB2-F4 mosquitoes have > 98% Australian ancestry, confirming the successful introduction of the wAlbB2 infection into the Australian genomic background through backcrossing. Genotypic and phenotypic analyses showed the wAlbB2-F4 strain retains the insecticide susceptible phenotype and genotype of native Australian mosquitoes. We demonstrate that the Wolbachia wAlbB2-F4, in addition to being suitable for population suppression programs, can also be effective in population replacement programs given its inhibition of virus infection in mosquitoes. The ease at which a target mosquito population can be transfected with wAlbB2, while retaining the genotypes and phenotypes of the target population, shows the utility of this strain for controlling the Ae. aegypti mosquitoes and the pathogens they transmit.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 2_ODS3 / 3_ND Base de dados: MEDLINE Assunto principal: Aedes / Wolbachia / Dengue / Vírus da Dengue / Zika virus / Infecção por Zika virus / Inseticidas Limite: Animals / Humans / Male País/Região como assunto: Oceania Idioma: En Revista: PLoS Negl Trop Dis Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 2_ODS3 / 3_ND Base de dados: MEDLINE Assunto principal: Aedes / Wolbachia / Dengue / Vírus da Dengue / Zika virus / Infecção por Zika virus / Inseticidas Limite: Animals / Humans / Male País/Região como assunto: Oceania Idioma: En Revista: PLoS Negl Trop Dis Ano de publicação: 2022 Tipo de documento: Article