Your browser doesn't support javascript.
loading
Response to high-altitude triggers in seasonal asthmatics on and off inhaled corticosteroid treatment.
Mertsch, Pontus; Götschke, Jeremias; Walter, Julia; Mümmler, Carlo; Ghiani, Alessandro; Schürmann, Ulrike; Kiefl, Rosemarie; Maria Huber, Rudolf; Behr, Jürgen; Kneidinger, Nikolaus; Milger, Katrin.
Afiliação
  • Mertsch P; Department of Medicine V, University Hospital, LMU, Munich, Germany.
  • Götschke J; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Germany.
  • Walter J; Department of Medicine V, University Hospital, LMU, Munich, Germany.
  • Mümmler C; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Germany.
  • Ghiani A; Department of Medicine V, University Hospital, LMU, Munich, Germany.
  • Schürmann U; Department of Medicine V, University Hospital, LMU, Munich, Germany.
  • Kiefl R; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Germany.
  • Maria Huber R; Lung Center Stuttgart - Schillerhoehe Lung Clinic (affiliated to the Robert-Bosch-Hospital GmbH, Stuttgart, Germany.
  • Behr J; Department of Pulmonology and Respiratory Medicine, Stuttgart, Germany.
  • Kneidinger N; Department of Medicine V, University Hospital, LMU, Munich, Germany.
  • Milger K; Department of Medicine V, University Hospital, LMU, Munich, Germany.
World Allergy Organ J ; 15(10): 100698, 2022 Oct.
Article em En | MEDLINE | ID: mdl-36254181
Background: Due to the effects of climate change, winter sport enthusiasts will be increasingly forced to stay at higher altitudes. High altitude (HA) environmental factors such as cold temperature, physical exertion, and hypoxia with subsequent hypocapnia due to hyperventilation have been shown to induce bronchoconstriction. With bronchial asthma being highly prevalent, asthmatics also will be increasingly exposed to HA environment and might experience increasing symptoms. Methods: We analysed the effects of HA factors at around 2600 m a.s.l. (metres above sea level) on lung function in mild seasonal asthmatics while they were routinely off (January) and on (March, after start of lowland pollen season) low-dose inhaled corticosteroid (ICS) treatment (n = 10), and matched healthy controls (n = 11). Results: Without inhaled corticosteroid (ICS) treatment mean FEV1 in asthmatics was 230 ml lower after exercise at HA compared to low altitude (LA, p < 0.05), while in healthy controls there was no significant difference. This decrease was mainly induced by cold and exercise at HA. During ICS treatment, this decrease was prevented. Methacholine response was reduced at HA compared to LA. Conclusions: The decrease of FEV1 in response to a combination of hypoxia, cold, and exercise is prevented by ICS treatment in mild, seasonal asthmatics. However, the FEV1 response to high altitude factors was overall small.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: World Allergy Organ J Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: World Allergy Organ J Ano de publicação: 2022 Tipo de documento: Article