Understanding the thrust force evolution and primary stability for dental implantation - An in-vitro experimental investigation.
Proc Inst Mech Eng H
; 236(12): 1732-1743, 2022 Dec.
Article
em En
| MEDLINE
| ID: mdl-36285396
The dental implant is challenging due to the unstable quality of the surrounding bone. This study aimed to explore the feasibility of using thrust force characteristics to identify different bone types and the influencing mechanisms of spindle speed and feed rate on primary stability of dental implants through in-vitro experiments. 13 groups of osteotomy experiments were performed on mandibles and maxillae of pigs with different bone types (I, II, and III) under different spindle speeds (600 and 800 rpm) and feed rates (20 and 60 mm/min). The thrust force evolution under different conditions was extracted and analysed to elaborate the distribution and thickness of the cortical and trabecular bone layers on different bone types. Dental implant placements were performed, and corresponding primary stabilities were obtained. Furthermore, histologic observation was conducted to reveal the bone/implant contact morphology. From the results, the amplitude and trend of thrust force show a regular variation during drilling different bone types. The highly dynamic information of thrust force can be analysed to characterise the distribution and thickness of the cortical and trabecular bone layers, hence effectively detecting different bone types. Since a lower feed rate and resulting bone temperature elevation lead to more thermal damages, primary stability decreases with the decrease of feed rate. Spindle speed has no significant effect. This study establishes a more in-depth understanding into the thrust force evolution and also provide a clinical option for reducing the complexity of bone type and drilling parameters determination in osteotomy.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Implantes Dentários
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Proc Inst Mech Eng H
Ano de publicação:
2022
Tipo de documento:
Article