Your browser doesn't support javascript.
loading
Lithographic Multicolor Patterning on Hybrid Perovskites for Nano-Optoelectronic Applications.
Zhou, Dawei; Zhao, Peiyi; Zhang, Junran; Jiang, Xiaohong; Qin, Sichen; Zhang, Xu; Jiang, Ran; Deng, Yifan; Jiang, Hanjun; Zhan, Guixiang; Luo, Yan; Ma, Huifang; Wang, Lin.
Afiliação
  • Zhou D; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Zhao P; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Zhang J; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Jiang X; Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical
  • Qin S; Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical
  • Zhang X; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Jiang R; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Deng Y; Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical
  • Jiang H; Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical
  • Zhan G; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Luo Y; Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical
  • Ma H; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
  • Wang L; School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China.
Small ; 18(48): e2205227, 2022 Dec.
Article em En | MEDLINE | ID: mdl-36285770
ABSTRACT
Ultrathin hybrid perovskites, with exotic properties and two-dimensional geometry, exhibit great potential in nanoscale optical and optoelectronic devices. However, it is still challenging for them to be compatible with high-resolution patterning technology toward miniaturization and integration applications, as they can be readily damaged by the organic solvents used in standard lithography processes. Here, a flexible three-step method is developed to make high-resolution multicolor patterning on hybrid perovskite, particularly achieved on a single nanosheet. The process includes first synthesis of precursor PbI2 , then e-beam lithography and final conversion to target perovskite. The patterns with linewidth around 150 nm can be achieved, which can be applied in miniature optoelectronic devices and high-resolution displays. As an example, the channel length of perovskite photodetectors can be down to 126 nm. Through deterministic vapor-phase anion exchange, a perovskite nanosheet can not only gradually alter the color of the same pattern in a wide wavelength range, but also display different colors simultaneously. The authors are optimistic that the method can be applied for unlimited perovskite types and device configurations for their high-integrated miniature applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Ano de publicação: 2022 Tipo de documento: Article