Your browser doesn't support javascript.
loading
Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm-2.
Liu, Heming; Xie, Ruikuan; Luo, Yuting; Cui, Zhicheng; Yu, Qiangmin; Gao, Zhiqiang; Zhang, Zhiyuan; Yang, Fengning; Kang, Xin; Ge, Shiyu; Li, Shaohai; Gao, Xuefeng; Chai, Guoliang; Liu, Le; Liu, Bilu.
Afiliação
  • Liu H; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Xie R; Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Luo Y; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
  • Cui Z; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Yu Q; Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Gao Z; Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Zhang Z; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Yang F; Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Kang X; Functional Materials and Interfaces Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Ge S; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Li S; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Gao X; Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Chai G; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Liu L; Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Liu B; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
Nat Commun ; 13(1): 6382, 2022 Oct 26.
Article em En | MEDLINE | ID: mdl-36289229
ABSTRACT
Constructing stable electrodes which function over long timescales at large current density is essential for the industrial realization and implementation of water electrolysis. However, rapid gas bubble detachment at large current density usually results in peeling-off of electrocatalysts and performance degradation, especially for long term operations. Here we construct a mechanically-stable, all-metal, and highly active CuMo6S8/Cu electrode by in-situ reaction between MoS2 and Cu. The Chevrel phase electrode exhibits strong binding at the electrocatalyst-support interface with weak adhesion at electrocatalyst-bubble interface, in addition to fast hydrogen evolution and charge transfer kinetics. These features facilitate the achievement of large current density of 2500 mA cm-2 at a small overpotential of 334 mV which operate stably at 2500 mA cm-2 for over 100 h. In-situ total internal reflection imaging at micrometer level and mechanical tests disclose the relationships of two interfacial forces and performance of electrocatalysts. This dual interfacial engineering strategy can be extended to construct stable and high-performance electrodes for other gas-involving reactions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Ano de publicação: 2022 Tipo de documento: Article