Learned end-to-end high-resolution lensless fiber imaging towards real-time cancer diagnosis.
Sci Rep
; 12(1): 18846, 2022 11 07.
Article
em En
| MEDLINE
| ID: mdl-36344626
Recent advances in label-free histology promise a new era for real-time diagnosis in neurosurgery. Deep learning using autofluorescence is promising for tumor classification without histochemical staining process. The high image resolution and minimally invasive diagnostics with negligible tissue damage is of great importance. The state of the art is raster scanning endoscopes, but the distal lens optics limits the size. Lensless fiber bundle endoscopy offers both small diameters of a few 100 microns and the suitability as single-use probes, which is beneficial in sterilization. The problem is the inherent honeycomb artifacts of coherent fiber bundles (CFB). For the first time, we demonstrate an end-to-end lensless fiber imaging with exploiting the near-field. The framework includes resolution enhancement and classification networks that use single-shot CFB images to provide both high-resolution imaging and tumor diagnosis. The well-trained resolution enhancement network not only recovers high-resolution features beyond the physical limitations of CFB, but also helps improving tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps increasing the classification accuracy from 90.8 to 95.6%. The novel technique enables histological real-time imaging with lensless fiber endoscopy and is promising for a quick and minimally invasive intraoperative treatment and cancer diagnosis in neurosurgery.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Endoscópios
/
Neoplasias
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2022
Tipo de documento:
Article