Your browser doesn't support javascript.
loading
Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin.
Sanchez-Reinoso, Zain; Todeschini, Sarah; Thibodeau, Jacinthe; Ben Said, Laila; Fliss, Ismail; Bazinet, Laurent; Mikhaylin, Sergey.
Afiliação
  • Sanchez-Reinoso Z; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
  • Todeschini S; Laboratory of Food Sustainability (EcoFoodLab), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada.
  • Thibodeau J; Laboratoire de Transformation Alimentaire et Procédés Électromembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada.
  • Ben Said L; International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval (Canada) and Lille University (France), Quebec City, QC G1V 0A6, Canada.
  • Fliss I; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
  • Bazinet L; Laboratoire de Transformation Alimentaire et Procédés Électromembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada.
  • Mikhaylin S; International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval (Canada) and Lille University (France), Quebec City, QC G1V 0A6, Canada.
Foods ; 11(21)2022 Oct 22.
Article em En | MEDLINE | ID: mdl-36359927
The production of bioactive peptides from hemoglobin via peptic hydrolysis is a promising alternative to valorizing slaughterhouse blood proteins. Nevertheless, it has some limitations such as low yield, high cost of enzymes, and the use of chemical reagents. The latter is aggravated by the pH increase to inactivate the enzyme, which can affect the bioactivity of the peptides. Thus, this study aimed to evaluate the effect of pulsed electric fields (PEF) on the pepsin inactivation and biological activities (antimicrobial and antioxidant) of hemoglobin hydrolysates. Bovine (Hb-B) and porcine (Hb-P) hemoglobin were hydrolyzed with pepsin for 3 h and treated with PEFs to inactivate the enzyme. The degree of hydrolysis (DH) did not show significant changes after PEF inactivation, whereas peptide population analysis showed some changes in PEF-treated hydrolysates over time, suggesting residual pepsin activity. PEF treatments showed no significant positive or negative impact on antimicrobial and antioxidant activities. Additionally, the impact of pH (3, 7, and 10) on bioactivity was studied. Higher pH fostered stronger anti-yeast activity and DPPH-scavenging capacity, whereas pH 7 fostered antifungal activity. Thus, the use of hemoglobin from the meat industry combined with PEF treatments could fit the circular economy concept since bioactive peptides can be produced more eco-efficiently and recycled to reduce the spoilage of meat products. Nevertheless, further studies on PEF conditions must be carried out to achieve complete inactivation of pepsin and the potential enhancement of peptides' bioactivity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Foods Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Foods Ano de publicação: 2022 Tipo de documento: Article